import torch import numpy as np def model_predict(model, tokenizer, sentences): """ Predict the labels of the sentences using the model and tokenizer Args: model: Model (transformers) tokenizer: Tokenizer (transformers tokenizer) sentences: Sentences to predict (ndarray) Returns: predictions: Predicted labels """ inputs = tokenizer(sentences, padding=True, truncation=True, return_tensors="pt", max_length=512).to("cpu") # Classify sentences with torch.no_grad(): outputs = model(**inputs) # get the logits label = np.argmax(outputs.logits.to("cpu")) return int(label)