File size: 37,757 Bytes
9fc17b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
from langchain.text_splitter import RecursiveCharacterTextSplitter
from streamlit_mic_recorder import mic_recorder
from streamlit.components.v1 import html,iframe
from huggingface_hub import InferenceClient
import google.generativeai as genai
import speech_recognition as sr
from PyDeepLX import PyDeepLX
from docx import Document
from openai import OpenAI
import streamlit as st
from gtts import gTTS
from PIL import Image
import pandas as pd
import requests
import hashlib
import base64
import langid
import PyPDF2
import io

if "openai_model_list" not in st.session_state:
    
    # author parameter
    st.session_state.author_key = ""
    st.session_state.gpt_choice = True
    st.session_state.gpt_choice_name = "Gemini"

    # chat parameter
    st.session_state.mode_list = ["**🤖Chat**","**🔤Deeplx**","**🎨Txt2Img**","**📊Data**"]
    st.session_state.mode = "**🤖Chat**"
    st.session_state.sys_prompt = ""
    st.session_state.chat_speech = True
    st.session_state.speech_input = False
    st.session_state.speech_input_lists = ["中文-zh","English-en","日本語-ja","Русский язык-ru","Deutsch-de","Français-fr","중국어-ko"]
    st.session_state.speech_language = st.session_state.speech_input_lists[0]
    st.session_state.audio_prompt = None
    st.session_state.chat_short_file = None

    st.session_state.openai_model_list = [
        "gpt-3.5-turbo",
        "gpt-3.5-turbo-instruct",
        "gpt-4",
        "gpt-4-32k",
        "gpt-4-1106-preview",
    ]
    st.session_state.openai_model = st.session_state.openai_model_list[0]
    st.session_state.openai_session = []
    st.session_state.openai_history = []

    st.session_state.google_model_list = ["gemini-pro","gemini-pro-vision"]
    st.session_state.google_model = st.session_state.google_model_list[0]
    st.session_state.google_session = []
    st.session_state.google_histgory = []
    st.session_state.google_attachment = None

    # translate parameter
    st.session_state.translate_session = []
    st.session_state.lang_lists = ["auto","中文-zh","English-en","日本語-ja","Русский язык-ru","Deutsch-de","Français-fr","중국어-ko"]
    st.session_state.target_lang = st.session_state.lang_lists[0]
    st.session_state.translate_speech = True
    st.session_state.translate_api_list = [
        "https://api.deeplx.org/translate",
        "https://deeplx.aivvm.com/",
        "PyDeeplx"]
    st.session_state.translate_api = st.session_state.translate_api_list[0]

    # draw parameter
    st.session_state.draw_model = "初始-StableDiffusion-2-1"
    st.session_state.draw_model_list = {
        "现实-AbsoluteReality_v1.8.1":"https://api-inference.huggingface.co/models/digiplay/AbsoluteReality_v1.8.1",
        "现实-Absolute-Reality-1.81":"https://api-inference.huggingface.co/models/Lykon/absolute-reality-1.81",
        "动漫-AingDiffusion9.2":"https://api-inference.huggingface.co/models/digiplay/AingDiffusion9.2",
        "现实动漫-BluePencilRealistic_v01":"https://api-inference.huggingface.co/models/digiplay/bluePencilRealistic_v01",
        "动漫写实-Counterfeit-v2.5":"https://api-inference.huggingface.co/models/gsdf/Counterfeit-V2.5",
        "动漫写实-Counterfeit-v25-2.5d-tweak":"https://api-inference.huggingface.co/models/digiplay/counterfeitV2525d_tweak",
        "动漫可爱-Cuteyukimix":"https://api-inference.huggingface.co/models/stablediffusionapi/cuteyukimix",
        "动漫可爱-Cuteyukimixadorable":"https://api-inference.huggingface.co/models/stablediffusionapi/cuteyukimixadorable",
        "现实动漫-Dreamshaper-7":"https://api-inference.huggingface.co/models/Lykon/dreamshaper-7",
        "现实动漫-Dreamshaper_LCM_v7":"https://api-inference.huggingface.co/models/SimianLuo/LCM_Dreamshaper_v7",
        "动漫3D-DucHaitenDreamWorld":"https://api-inference.huggingface.co/models/DucHaiten/DucHaitenDreamWorld",
        "现实-EpiCRealism":"https://api-inference.huggingface.co/models/emilianJR/epiCRealism",
        "现实照片-EpiCPhotoGasm":"https://api-inference.huggingface.co/models/Yntec/epiCPhotoGasm",
        "动漫丰富-Ether-Blu-Mix-b5":"https://api-inference.huggingface.co/models/tensor-diffusion/Ether-Blu-Mix-V5",
        "动漫-Flat-2d-Animerge":"https://api-inference.huggingface.co/models/jinaai/flat-2d-animerge",
        "动漫风景-Genshin-Landscape-Diffusion":"https://api-inference.huggingface.co/models/Apocalypse-19/Genshin-Landscape-Diffusion",
        "现实照片-Juggernaut-XL-v7":"https://api-inference.huggingface.co/models/stablediffusionapi/juggernaut-xl-v7",
        "现实风景-Landscape_PhotoReal_v1":"https://api-inference.huggingface.co/models/digiplay/Landscape_PhotoReal_v1",
        "艺术水墨-MoXin":"https://api-inference.huggingface.co/models/zhyemmmm/MoXin",
        "现实写实-OnlyRealistic":"https://api-inference.huggingface.co/models/stablediffusionapi/onlyrealistic",
        "现实-Realistic-Vision-v51":"https://api-inference.huggingface.co/models/stablediffusionapi/realistic-vision-v51",
        "初始-StableDiffusion-2-1":"https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-2-1",
        "初始-StableDiffusion-XL-0.9":"https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-xl-base-0.9",
        "动漫-TMND-Mix":"https://api-inference.huggingface.co/models/stablediffusionapi/tmnd-mix",
        "animagine-XL-3.0":"https://api-inference.huggingface.co/models/cagliostrolab/animagine-xl-3.0",
        "艺术-Zavychromaxl-v3":"https://api-inference.huggingface.co/models/stablediffusionapi/zavychromaxlv3",
        "Dalle-v1.1":"https://api-inference.huggingface.co/models/dataautogpt3/OpenDalleV1.1",
        "Dalle-3-xl":"https://api-inference.huggingface.co/models/openskyml/dalle-3-xl",
        "playground-v2-美化":"https://api-inference.huggingface.co/models/playgroundai/playground-v2-1024px-aesthetic",
        "Dalle-proteus-v0.2":"https://api-inference.huggingface.co/models/dataautogpt3/ProteusV0.2",
    }
    st.session_state.negative_prompt = "extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, bad anatomy, bad proportions, extra limbs, cloned face, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs"
    st.session_state.StableDiffusion_URL = st.session_state.draw_model_list[st.session_state.draw_model]
    st.session_state.auto_translate = True
    st.session_state.chat_draw = True
    st.session_state.wait_for_model = True
    st.session_state.draw_sesson = []
    st.session_state.draw_chat_system = """
I want you to act as a prompt generator for Midjourney's artificial intelligence program. Your job is to based on conversations with users provide detailed and creative descriptions that will inspire unique and interesting images from the AI. Keep in mind that the AI is capable of understanding a wide range of language and can interpret abstract concepts, so feel free to be as imaginative and descriptive as possible. For example, you could describe a scene from a futuristic city, or a surreal landscape filled with strange creatures. The more detailed and imaginative your description, the more interesting the resulting image will be. Remember to generate a description in English only.
"""
    st.session_state.chat_draw_session = [{'role':'system','content':st.session_state.draw_chat_system}]

    st.session_state.prompts_gpt = pd.DataFrame(columns=['act', 'prompt'])

    # token
    st.session_state.openai_api_key = ""
    st.session_state.openai_base_url = ""
    st.session_state.google_api_key = ""
    st.session_state.huggingface_token = ""

    # 类
    st.session_state.sr = sr.Recognizer()
    st.session_state.openai_client = None
    st.session_state.google_client = None

########################### element ###########################
    
header =  st.empty()

# 整体页面
show_app = st.container()
with show_app:

    # 文字聊天
    show_chat = st.container()

    # 语音对话
    show_talk = st.container()

    # deepl翻译
    show_translate = st.container()

    # 文本生成图片
    show_draw = st.container()

    # 数据
    show_data = st.container()

########################### function ###########################

@st.cache_data
def sha256_hash(string):
    # 创建SHA256哈希对象
    sha256_hasher = hashlib.sha256()
    # 将字符串编码为字节流并更新哈希对象
    sha256_hasher.update(string.encode('utf-8'))
    # 获取哈希结果
    hashed_string = sha256_hasher.hexdigest()
    return hashed_string


def get_response(flag,model,history,stream=True):
    try:
        if not flag:
            response = st.session_state.openai_client.chat.completions.create(
                model = model,
                messages = history,
                stream=stream
            )
        else:
            response = st.session_state.google_client.generate_content(
                contents = history,
                stream=stream,
                safety_settings={'HARASSMENT':'block_none'}
            )
        return True,response
    except Exception as e:
        st.error("Chat AI response error:{}".format(e))
        return False,e


def chat_ai(message,model,history,session,flag=st.session_state.gpt_choice,attachment=st.session_state.google_attachment):
    if len(history) != 0 and len(session) != 0:
        if history[-1]["role"] == "user":
            history.pop()
        if session[-1]["role"] == "user":
            session.pop()

    # openai
    if not flag:
        history.append({"role":"user","content":message})
        session.append({"role":"user","content":message})
        response_check,response = get_response(flag,model,history)
        if response_check:
            show_chat_page(flag,session)
            reply={"role":"assistant","content":""}
            with show_chat:
                with st.chat_message(reply["role"]):
                    line = st.empty()
                    for chunk in response:
                        message = chunk.choices[0].delta.content
                        if message is not None:
                            reply["content"] += message
                            line.empty()
                            line.write(reply["content"])
                history.append(reply)
                session.append(reply)
                if st.session_state.chat_speech == True:
                    if reply["content"] != "":
                        mytts(reply["content"])
            
            
        else:
            history.pop()
            session.pop()
            st.error(response)
    # google
    else:
        if model == "gemini-pro-vision":
            if attachment is not None:
                history=[{"role":"user","parts":[message,]+attachment},]
                session=[{"role":"user","parts":[message,]+attachment},]
                attachment = None
            else:
                st.error("Please attach a Image")
                return False
        else:
            history.append({"role":"user","parts":[message,]})
            session.append({"role":"user","parts":[message,]})
        response_check,response = get_response(flag,model,history)
        if response_check:
            show_chat_page(flag,session)
            reply = {"role":"model","parts":["",]}
            with show_chat:
                with st.chat_message(reply["role"]):
                    line = st.empty()
                    for chunk in response:
                        try:
                            message = chunk.text
                            reply["parts"][0] += message
                            line.empty()
                            line.write(reply["parts"][0])
                        except Exception as e:
                            print(f'{type(e).__name__}: {e}')
                history.append(reply)
                session.append(reply)
                if st.session_state.chat_speech == True:
                    if reply["parts"][0]!="":
                        mytts(reply["parts"][0])
            
            
        else:
            if model != "gemini-pro-vision":
                history.pop()
                session.pop()
            st.error(response)


def mytts(text):
    def autoplay_audio(audio_data:io.BytesIO):
        data = audio_data.getvalue()
        b64 = base64.b64encode(data).decode()
        md = f"""
                <audio controls autoplay="true" id="myAudio" style="width: 100%;">
                    <source src="data:audio/ogg;base64,{b64}" type="audio/ogg">
                </audio>
                <script>
                    var audio = document.getElementById("myAudio");
                    audio.playbackRate = 1.5; 
                </script>
                """
        html(md)
    
    text = text.replace("```"," ").replace("`"," ").replace("***"," ").replace("**"," ").replace("$$"," ").replace("###"," ").replace("##"," ").replace("#"," ").replace("---"," ")
    lang,conf = langid.classify(text)
    tts = gTTS(text=text,lang=lang)
    speach_BytesIO = io.BytesIO()
    tts.write_to_fp(speach_BytesIO)
    autoplay_audio(speach_BytesIO)
    st.write(lang,conf)


@st.cache_data
def audio2text(audio_prompt,language):
    audio_data = sr.AudioData(audio_prompt['bytes'],audio_prompt['sample_rate'],audio_prompt['sample_width'])
    output = st.session_state.sr.recognize_google(audio_data,language=language)
    return output


def show_chat_page(flag,session):
    if not flag:
        with show_chat:
            for section in session:
                with st.chat_message(section["role"]):
                    st.write(section["content"])
    else:
        with show_chat:
            for section in session:
                with st.chat_message(section["role"]):
                    for piece in section["parts"]:
                        if isinstance(piece,str):
                            st.write(piece)
                        elif isinstance(piece,Image.Image):
                            st.image(piece,use_column_width=True)


@st.cache_data
def get_file_reader(file,name,type):

    def get_text(file,type):
    
        def extract_text_from_docx(file):
            doc = Document(file)
            text = ""
            for paragraph in doc.paragraphs:
                text += paragraph.text + "\n"
            return text
        
        def extract_text_from_pdf(file):
            pdf = PyPDF2.PdfReader(file)
            text = ""
            for page_num in range(len(pdf.pages)):
                page = pdf.pages[page_num]
                text += page.extract_text()
                
            return text
        
        # 文件类型判断
        if type == 'pdf':
            text = extract_text_from_pdf(file)
        elif type == 'docx':
            text = extract_text_from_docx(file)
        elif type == 'txt' or type == 'md' or type == 'py' or type == 'c' or type == 'cpp' or type == 'js':
            text = file.getvalue().decode("utf-8")
        else:
            st.error("The file type is not supported.(only pdf, docx, txt, md supported)")
            return []
        
        return text
    
    
    def get_splitted_text(text):
        r_splitter = RecursiveCharacterTextSplitter(
            chunk_size=4000,
            chunk_overlap=0
        )
        return r_splitter.split_text(text)
    
    assistant_reply = "Acknowledged"
    start_content = "You are a file reading bot. Next, the user will send a file. After reading, you should fully understand the content of the file and be able to analyze, interpret, and respond to questions related to the file in both Chinese and Markdown formats. Please only answer questions based on the content of the document. If the question is not mentioned in the document, please reply directly to the article without referring to other materials. Answer step-by-step."
    end_content = "File sent. Next, please reply in Chinese and format your response using markdown based on the content.'"
    st.session_state.openai_history = [{'role':'system','content':start_content}]
    st.session_state.google_histgory = [{'role':'user','parts':[start_content,]},{'role':'model','parts':[assistant_reply,]}]

    # 文本提取并拆分
    text = get_text(file,type)
    text_list = get_splitted_text(text)
    pages = len(text_list)
    start_message = f"The file name is {name}, and I will now send you the content of the file in {len(text_list)} sections. Please ensure that you are ready to receive the instructions for sending the file. Once you receive the instructions, please be prepared to answer my question."
    st.session_state.openai_history+=[{'role':'user','content':start_message},{'role':'assistant','content':assistant_reply}]
    st.session_state.google_histgory+=[{'role':'user','parts':[start_message,]},{'role':'model','parts':[assistant_reply,]}]

    # 分段输入
    for i in range(pages):
        st.session_state.openai_history+=[{'role':'user','content':text_list[i]},{'role':'assistant','content':assistant_reply}]
        st.session_state.google_histgory+=[{'role':'user','parts':[text_list[i],]},{'role':'model','parts':[assistant_reply,]}]

    # 结束文本输入
    st.session_state.openai_history+=[{'role':'user','content':end_content},{'role':'assistant','content':"I have finished reading the file content, you can ask me anything."}]
    st.session_state.google_histgory+=[{'role':'user','parts':[end_content,]},{'role':'model','parts':["I have finished reading the file content, you can ask me anything.",]}]



def deeplx_translate(text,source_lang,target_lang,api):
    if api == st.session_state.translate_api_list[0]:
        if source_lang is None:
            source_lang="auto"
        headers = {"Content-Type": "application/json"}
        body = {
            "text":text,
            "target_lang":target_lang,
            "source_lang":source_lang
        }
        try:
            response = requests.post(api, json=body, headers=headers)
            return True,response.json()["data"]
        except Exception as e:
            st.error("Deeplx response error: {}".format(e))
            return False,e
    elif api == st.session_state.translate_api_list[1]:
        if source_lang is None:
            source_lang,conf = langid.classify(text)
        headers = {"Content-Type": "application/json"}
        body = {
            "text":text,
            "target_lang":target_lang,
            "source_lang":source_lang
        }
        try:
            response = requests.post(api, json=body, headers=headers)
            return True,response.json()["response"]["translated_text"]
        except Exception as e:
            st.error("Deeplx response error: {}".format(e))
            return False,e
    elif api == st.session_state.translate_api_list[-1]:
        try:
            response = PyDeepLX.translate(text,'auto',target_lang)
            return True,response
        except Exception as e:
            st.error("Deeplx response error: {}".format(e))
            return False,e


def translate(text,target_lang,api=st.session_state.translate_api):
    st.session_state.translate_session.append({"role":"user","content":text})
    show_translate_page()
    if target_lang == "to":
        lang,conf = langid.classify(text)
        if lang == "zh":
            flag,reply = deeplx_translate(text,lang,"en",api)
        else:
            lang_list = [i[-2:] for i in st.session_state.lang_lists]
            lang_list.remove("to")
            if lang not in lang_list:
                flag,reply = deeplx_translate(text,"en","zh",api)
            else:
                flag,reply = deeplx_translate(text,lang,"zh",api)
    else:
        flag,reply = deeplx_translate(text,None,target_lang,api)
    if flag:
        st.session_state.translate_session.append({"role":"assistant","content":reply})
        
        with show_translate.chat_message("assistant"):
            st.write(reply)
        if st.session_state.translate_speech == True:
            if reply != "":
                mytts(reply)
    else:
        st.error(reply)


def show_translate_page():
    for section in st.session_state.translate_session:
        with show_translate.chat_message(section['role']):
            st.write(section['content'])


def text2img(prompt,token=st.session_state.huggingface_token,StableDiffusion_URL=st.session_state.StableDiffusion_URL):
    def query(client,payload):
        try:
            response = client.post(json=payload,model=StableDiffusion_URL)
            return True, response
        except requests.exceptions.RequestException as e:
            return False,e
        
    huggingface_client = InferenceClient(token=token)
    st.session_state.draw_sesson.append({"role":"user","prompt":prompt})
    if st.session_state.chat_draw:
        if len(st.session_state.chat_draw_session) != 0:
            if st.session_state.chat_draw_session[-1]["role"] == "user":
                st.session_state.chat_draw_session.pop()
        st.session_state.chat_draw_session.append({"role":"user","content":prompt})
        response_check,response = get_response(False,st.session_state.openai_model,st.session_state.chat_draw_session,stream=False)
        if response_check:
            prompt = response.choices[0].message.content
            st.session_state.chat_draw_session.append({"role":"assistant","content":prompt})
            if st.session_state.auto_translate:
                lang,conf = langid.classify(prompt)
                if lang != "en":
                    flag,prompt = deeplx_translate(prompt,lang,"en",st.session_state.translate_api)
                    if not flag:
                        return False
            show_draw_page()
            with show_draw.chat_message("assistant"):
                st.write("**"+st.session_state.draw_model+"**: "+prompt)
                flag,response = query(huggingface_client,{
                    "inputs":prompt,
                    "negative_prompt":st.session_state.negative_prompt,
                })
                image = response
                st.session_state.draw_sesson.append({"role":"assistant","prompt":"**"+st.session_state.draw_model+"**: "+prompt,"image":image,"flag":flag})
                if flag:
                    st.image(image,use_column_width=True)
                else:
                    st.write(image)
    else:
        if st.session_state.auto_translate:
            lang,conf = langid.classify(prompt)
            if lang != "en":
                flag,prompt = deeplx_translate(prompt,lang,"en",st.session_state.translate_api)
                if not flag:
                    return False
        show_draw_page()
        with show_draw.chat_message("assistant"):
            st.write("**"+st.session_state.draw_model+"**: "+prompt)
            flag,response = query(huggingface_client,{
                "inputs":prompt,
                "negative_prompt":st.session_state.negative_prompt,
            })
            image = response
            st.session_state.draw_sesson.append({"role":"assistant","prompt":"**"+st.session_state.draw_model+"**: "+prompt,"image":image,"flag":flag})
            if flag:
                st.image(image,use_column_width=True)
            else:
                st.write(image)


def show_draw_page():
    for section in st.session_state.draw_sesson:
        with show_draw.chat_message(section["role"]):
            if section["role"] == "user":
                st.write(section["prompt"])
            else:
                st.write(section["prompt"])
                if section["flag"]:
                    st.image(section["image"],use_column_width=True)
                else:
                    st.write(section["image"])


@st.cache_data
def get_data(file):
    data = pd.read_csv(file)
    return data
########################### mount ###########################

def new_chat():

    # openai
    if st.session_state.sys_prompt == "":
        st.session_state.openai_history = []
    else:
        st.session_state.openai_history = [{"role":"system","content":st.session_state.sys_prompt},]
    st.session_state.openai_session = []

    # google
    st.session_state.google_histgory = []
    st.session_state.google_session = []
    if st.session_state.google_api_key:
        genai.configure(api_key=st.session_state.google_api_key)
        st.session_state.google_client = genai.GenerativeModel(st.session_state.google_model)

    # translate
    st.session_state.translate_session = []
    
    # draw
    
    st.session_state.draw_sesson = []
    st.session_state.chat_draw_session = [{'role':'system','content':st.session_state.draw_chat_system}]

def author_channel():
    author_key_hash = sha256_hash(st.session_state.author_key.strip())
    if author_key_hash in st.secrets.pwsds:
        # openai
        st.session_state.openai_api_key = st.secrets.openai_api_keys[st.secrets.pwsds[author_key_hash]]
        st.session_state.openai_base_url = st.secrets.openai_base_urls[st.secrets.pwsds[author_key_hash]]
        st.session_state.openai_client = OpenAI(
            api_key=st.session_state.openai_api_key,
            base_url=st.session_state.openai_base_url
        )
        # google
        st.session_state.google_api_key = st.secrets.google_api_keys[st.secrets.pwsds[author_key_hash]]
        genai.configure(api_key=st.session_state.google_api_key)
        st.session_state.google_client = genai.GenerativeModel(st.session_state.google_model)
        # huggingface
        st.session_state.huggingface_token = st.secrets.huggingface_tokens[st.secrets.pwsds[author_key_hash]]
        

def gpt_choice():
    st.session_state.gpt_choice = not st.session_state.gpt_choice
    if st.session_state.gpt_choice:
        st.session_state.gpt_choice_name = "Gemini"
    else:
        st.session_state.gpt_choice_name = "ChatGPT"


def upload_google_attachment():
    st.session_state.google_attachment = st.session_state.google_attachment
    if st.session_state.google_attachment is not None:
        attachment = []
        for upload_img in st.session_state.google_attachment:
            attachment.append(Image.open(upload_img))
        st.session_state.google_attachment = attachment
        

def get_file_chat():

    def collect_file(file_upload):
        file_name = ".".join(file_upload.name.split('.')[0:-1])
        file_type = file_upload.name.split('.')[-1]

        return file_name,file_type
    
    st.session_state.chat_short_file = st.session_state.chat_short_file
    if st.session_state.chat_short_file:
        file_name,file_type = collect_file(st.session_state.chat_short_file)
        get_file_reader(st.session_state.chat_short_file,file_name,file_type)

def change_paramater():
    st.session_state.openai_api_key = st.session_state.openai_api_key
    st.session_state.openai_base_url = st.session_state.openai_base_url
    st.session_state.sys_prompt = st.session_state.sys_prompt
    st.session_state.google_api_key = st.session_state.google_api_key
    st.session_state.chat_speech = st.session_state.chat_speech
    st.session_state.google_api_key = st.session_state.google_api_key
    st.session_state.speech_input = st.session_state.speech_input
    st.session_state.speech_language = st.session_state.speech_language
    st.session_state.draw_model = st.session_state.draw_model
    st.session_state.StableDiffusion_URL = st.session_state.draw_model_list[st.session_state.draw_model]
    st.session_state.huggingface_token = st.session_state.huggingface_token
    st.session_state.negative_prompt = st.session_state.negative_prompt
    st.session_state.mode = st.session_state.mode
    st.session_state.translate_api = st.session_state.translate_api
    st.session_state.target_lang = st.session_state.target_lang
    st.session_state.translate_speech = st.session_state.translate_speech
    st.session_state.auto_translate = st.session_state.auto_translate
    st.session_state.chat_draw = st.session_state.chat_draw
    st.session_state.wait_for_model = st.session_state.wait_for_model
    st.session_state.prompts_gpt = st.session_state.prompts_gpt

def get_save():
    change_paramater()
    # openai
    if st.session_state.openai_api_key and st.session_state.openai_base_url:
        st.session_state.openai_client = OpenAI(
            api_key=st.session_state.openai_api_key,
            base_url=st.session_state.openai_base_url
        )
    if len(st.session_state.openai_history) == 0:
        if st.session_state.sys_prompt != "":
            st.session_state.openai_history = [{"role":"system","content":st.session_state.sys_prompt},]
    # google
    if st.session_state.google_api_key:
        genai.configure(api_key=st.session_state.google_api_key)
        st.session_state.google_client = genai.GenerativeModel(st.session_state.google_model)

    # show
    if st.session_state.mode == "**🤖Chat**":
        if not st.session_state.gpt_choice:
            show_chat_page(False,st.session_state.openai_session)
        else:
            show_chat_page(True,st.session_state.google_session)
    elif st.session_state.mode == "**🔤Deeplx**":
        show_translate_page()
    elif st.session_state.mode == "**🎨Txt2Img**":
        show_draw_page()
    


########################### sidebar ###########################

with st.sidebar:
    
    # 新的开始
    with st.container():
        st.button("🆕 New Chat",use_container_width=True,key="New Chat")
        if st.session_state.get("New Chat"):
            new_chat()

    # 作者通道
    with st.container():
        st.session_state.author_key = st.text_input("author channel",type='password',value=st.session_state.author_key,key="author channel")
        if st.session_state.get("author channel"):
            author_channel()

    # 聊天设置
    with st.container():
        with st.expander("**Chat Settings**"):
            col1,col2 = st.columns(2)
            with col1:
                st.session_state.gpt_choice = st.toggle(st.session_state.gpt_choice_name,value=st.session_state.gpt_choice,on_change=gpt_choice)
            with col2:
                st.session_state.chat_speech = st.toggle("speech",st.session_state.chat_speech,on_change=change_paramater)
            if not st.session_state.gpt_choice:
                st.session_state.openai_model = st.selectbox("Chat Models",sorted(st.session_state.openai_model_list),on_change=new_chat)
                st.session_state.openai_api_key = st.text_input("api key",value=st.session_state.openai_api_key,type='password')
                st.session_state.openai_base_url = st.text_input("api base",value=st.session_state.openai_base_url)
                st.session_state.sys_prompt = st.text_input("sys prompt",value=st.session_state.sys_prompt,on_change=change_paramater)
                st.session_state.chat_short_file = st.file_uploader("Chat short file",label_visibility="collapsed")
                st.button("ChatFile",use_container_width=True,key="ChatFile")
                if st.session_state.get("ChatFile"):
                    get_file_chat()
            else:
                st.session_state.google_model = st.selectbox("Chat Models",sorted(st.session_state.google_model_list),on_change=new_chat)
                st.session_state.google_api_key = st.text_input("api key",value=st.session_state.google_api_key,type='password',on_change=change_paramater)
                if st.session_state.google_model == "gemini-pro-vision":
                    st.session_state.google_attachment = st.file_uploader("Image for gemini-pro-vision",type=['jpg','png','jpeg'],accept_multiple_files=True,label_visibility="collapsed")
                    st.button("Send Image",key="google attachment",use_container_width=True)
                    if st.session_state.get("google attachment"):
                        upload_google_attachment()
                else:
                    st.session_state.chat_short_file = st.file_uploader("Chat short file",label_visibility="collapsed")
                    st.button("ChatFile",use_container_width=True,key="ChatFile")
                    if st.session_state.get("ChatFile"):
                        get_file_chat()
            st.session_state.speech_input = st.toggle("talk mode",st.session_state.speech_input,on_change=change_paramater)
                
    # 翻译设置
    with st.container():
        with st.expander("**Translate Settings**"):
            st.session_state.translate_api = st.selectbox("Translate API",st.session_state.translate_api_list,on_change=change_paramater)
            st.session_state.target_lang = st.selectbox("Target Language",st.session_state.lang_lists,on_change=change_paramater)
            st.session_state.translate_speech = st.toggle('translate speech', st.session_state.translate_speech,on_change=change_paramater)
    
    # 绘画设置
    with st.container():
        with st.expander("**Draw Settings**"):
            st.session_state.draw_model = st.selectbox('Draw Models', sorted(st.session_state.draw_model_list.keys(),key=lambda x:x.split("-")[0]),on_change=change_paramater)
            st.session_state.huggingface_token = st.text_input('Huggingface Token',type='password',value=st.session_state.huggingface_token,on_change=change_paramater)
            st.session_state.negative_prompt = st.text_input('Negative Prompt',value=st.session_state.negative_prompt,on_change=change_paramater)
            # col1,col2,col3 = st.columns(3)
            # with col1:
            st.session_state.chat_draw = st.toggle('Chat', st.session_state.chat_draw,on_change=change_paramater)
            # with col2:
            st.session_state.auto_translate = st.toggle('Translate', st.session_state.auto_translate,on_change=change_paramater)
            # with col3:
            st.session_state.wait_for_model = st.toggle('Wait', st.session_state.wait_for_model,on_change=change_paramater)

    # 保存
    st.button("Save",use_container_width=True,key="Save")
    if st.session_state.get("Save"):
        get_save()


    # 模式
    with st.container():
        with st.container():
            st.session_state.mode = st.radio("Choose Mode",st.session_state.mode_list,on_change=change_paramater)


########################### 聊天展示区 ###########################

if st.session_state.mode == "**🤖Chat**":
    if not st.session_state.gpt_choice:
        header.write("<h2> 🤖 "+st.session_state.openai_model+"</h2>",unsafe_allow_html=True)
    else:
        header.write("<h2> 🤖 "+st.session_state.google_model+"</h2>",unsafe_allow_html=True)
    if not st.session_state.speech_input:
        user_prompt = st.chat_input("Send a message")
        if user_prompt:
            if not st.session_state.gpt_choice:
                chat_ai(user_prompt,st.session_state.openai_model,st.session_state.openai_history,st.session_state.openai_session)
            else:
                chat_ai(user_prompt,st.session_state.google_model,st.session_state.google_histgory,st.session_state.google_session)
    else:
        with st.container():
            st.session_state.speech_language = st.selectbox("🎙️language",st.session_state.speech_input_lists,on_change=change_paramater)
            st.session_state.audio_prompt = mic_recorder(
                start_prompt="🎙️开始说话",
                stop_prompt="🛑结束说话", 
                just_once=True,
                use_container_width=True,
                callback=None,
                args=(),
                kwargs={},
                key=None
            )
        if st.session_state.audio_prompt:
            user_prompt = audio2text(st.session_state.audio_prompt,st.session_state.speech_language[-2:])
            if not st.session_state.gpt_choice:
                chat_ai(user_prompt,st.session_state.openai_model,st.session_state.openai_history,st.session_state.openai_session)
            else:
                chat_ai(user_prompt,st.session_state.google_model,st.session_state.google_histgory,st.session_state.google_session)


elif st.session_state.mode == "**🔤Deeplx**":
    header.write("<h2> 🔤 Deeplx-"+st.session_state.target_lang+"</h2>",unsafe_allow_html=True)
    txt_prompt = st.chat_input("Input your content to be translated",max_chars=5000)
    if txt_prompt:
        translate(txt_prompt,st.session_state.target_lang[-2:])

elif st.session_state.mode == "**🎨Txt2Img**":
    header.write("<h2> 🎨 "+st.session_state.draw_model+"</h2>",unsafe_allow_html=True)
    draw_prompt = st.chat_input("Send your prompt")
    if draw_prompt:
        text2img(draw_prompt)

elif st.session_state.mode == "**📊Data**":
    # 获取数据
    prompts_gpt = get_data("./prompts.csv")

    # 显示
    header.write("<h2> 📊Data </h2>",unsafe_allow_html=True)
    keywords = st.chat_input("Send your keywords")
    with show_data:
        tab_gpt,tab_sd = st.tabs(["GPT-Prompts","SD-Prompts"])
        with tab_gpt:
            if keywords:
                st.session_state.prompts_gpt = pd.DataFrame(columns=['act', 'prompt'])
                idx = 0
                for index,row in prompts_gpt.iterrows():
                    if keywords.lower() in row["act"].lower():
                        idx += 1
                        new_row = pd.DataFrame({"act":row["act"], "prompt":row["prompt"]}, index=[idx,])
                        st.session_state.prompts_gpt = pd.concat([st.session_state.prompts_gpt, new_row],ignore_index=True)
                st.dataframe(st.session_state.prompts_gpt)
            else:
                st.session_state.prompts_gpt = prompts_gpt
                st.dataframe(st.session_state.prompts_gpt)
    with show_data:
        pass

change_paramater()