import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig import torch import spaces import os IS_SPACES_ZERO = os.environ.get("SPACES_ZERO_GPU", "0") == "1" IS_SPACE = os.environ.get("SPACE_ID", None) is not None device = "cuda" if torch.cuda.is_available() else "cpu" LOW_MEMORY = os.getenv("LOW_MEMORY", "0") == "1" print(f"Using device: {device}") print(f"low memory: {LOW_MEMORY}") model_name = "ruslanmv/Medical-Llama3-8B" # Move model and tokenizer to the CUDA device model = AutoModelForCausalLM.from_pretrained(model_name).to(device) tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) tokenizer.pad_token = tokenizer.eos_token @spaces.GPU def askme(symptoms, question): sys_message = '''\ You are an AI Medical Assistant trained on a vast dataset of health information. Please be thorough and provide an informative answer. If you don't know the answer to a specific medical inquiry, advise seeking professional help. ''' content = symptoms + " " + question messages = [{"role": "system", "content": sys_message}, {"role": "user", "content": content}] prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) inputs = tokenizer(prompt, return_tensors="pt").to(device) # Ensure inputs are on CUDA device outputs = model.generate(**inputs, max_new_tokens=200, use_cache=True) response_text = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0].strip() # Remove system messages and content # Extract and return the generated text, removing the prompt # Extract only the assistant's response # Extract only the assistant's response answer = response_text.split('<|im_start|>assistant')[1].split('<|im_end|>')[0].strip() return answer # Example usage symptoms = '''\ I'm a 35-year-old male and for the past few months, I've been experiencing fatigue, increased sensitivity to cold, and dry, itchy skin. ''' question = '''\ Could these symptoms be related to hypothyroidism? If so, what steps should I take to get a proper diagnosis and discuss treatment options? ''' examples = [ [symptoms, question] ] css = """ /* General Container Styles */ .gradio-container { font-family: "IBM Plex Sans", sans-serif; position: fixed; /* Ensure full-screen coverage */ top: 0; left: 0; width: 100vw; /* Set width to 100% viewport width */ height: 100vh; /* Set height to 100% viewport height */ margin: 0; /* Remove margins for full-screen effect */ padding: 0; /* Remove padding fol-screen background */ background-color: #212529; /* Dark background color */ color: #fff; /* Light text color for better readability */ overflow: hidden; /* Hide potential overflow content */ background-image: url("https://huggingface.co/spaces/ruslanmv/AI-Medical-Chatbot/resolve/main/notebook/local/img/background.jpg"); /* Replace with your image path */ background-size: cover; /* Stretch the image to cover the container */ background-position: center; /* Center the image horizontally and vertically */ } /* Button Styles */ .gr-button { color: white; background: #007bff; /* Use a primary color for the background */ white-space: nowrap; border: none; padding: 10px 20px; border-radius: 8px; cursor: pointer; transition: background-color 0.3s, color 0.3s; } .gr-button:hover { background-color: #0056b3; /* Darken the background color on hover */ } /* Output box styles */ .gradio-textbox { background-color: #343a40; /* Dark background color */ color: #fff; /* Light text color for better readability */ border-color: #343a40; /* Dark border color */ border-radius: 8px; } """ welcome_message = """# AI Medical Llama 3 Chatbot Ask any medical question giving first your symptoms and get answers from our AI Medical Llama3 Chatbot Developed by Ruslan Magana. Visit [https://ruslanmv.com/](https://ruslanmv.com/) for more information.""" symptoms_input = gr.Textbox(label="Symptoms") question_input = gr.Textbox(label="Question") answer_output = gr.Textbox(label="Answer") iface = gr.Interface( fn=askme, inputs=[symptoms_input, question_input], outputs=answer_output, examples=examples, css=css, description=welcome_message # Add the welcome message here ) iface.launch() ''' with gr.Blocks(css=css) as interface: gr.Markdown(welcome_message) # Display the welcome message with gr.Row(): with gr.Column(): symptoms_input = gr.Textbox(label="Symptoms", placeholder="Enter symptoms here") question_input = gr.Textbox(label="Question", placeholder="Enter question here") generate_button = gr.Button("Ask Me", variant="primary") with gr.Row(): answer_output = gr.Textbox(type="text", label="Answer") interface.launch() ''' ''' iface = gr.Interface( fn=askme, inputs=["text", "text"], outputs="text", examples=examples, title="Medical AI Chatbot", description="Ask me a medical question!" ) iface.launch() ''' ''' iface = gr.Interface( fn=askme, inputs=[ gr.Textbox(label="Symptoms", placeholder="Enter symptoms here"), gr.Textbox(label="Question", placeholder="Enter question here") ], outputs="text", examples=examples, title="Medical AI Chatbot", description="Ask me a medical question!", css=css ) iface.launch() '''