Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,9 +1,16 @@
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
-
|
4 |
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
5 |
import torch
|
|
|
|
|
|
|
|
|
6 |
|
|
|
|
|
|
|
|
|
7 |
# Define BitsAndBytesConfig
|
8 |
bnb_config = BitsAndBytesConfig(load_in_4bit=True,
|
9 |
bnb_4bit_quant_type="nf4",
|
@@ -19,7 +26,7 @@ model = AutoModelForCausalLM.from_pretrained(model_name, config=bnb_config)
|
|
19 |
# Ensure model is on the correct device
|
20 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
21 |
model.to(device)
|
22 |
-
|
23 |
# Define the respond function
|
24 |
def respond(
|
25 |
message,
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
|
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
4 |
import torch
|
5 |
+
import spaces
|
6 |
+
import os
|
7 |
+
IS_SPACES_ZERO = os.environ.get("SPACES_ZERO_GPU", "0") == "1"
|
8 |
+
IS_SPACE = os.environ.get("SPACE_ID", None) is not None
|
9 |
|
10 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
11 |
+
LOW_MEMORY = os.getenv("LOW_MEMORY", "0") == "1"
|
12 |
+
print(f"Using device: {device}")
|
13 |
+
print(f"low memory: {LOW_MEMORY}")
|
14 |
# Define BitsAndBytesConfig
|
15 |
bnb_config = BitsAndBytesConfig(load_in_4bit=True,
|
16 |
bnb_4bit_quant_type="nf4",
|
|
|
26 |
# Ensure model is on the correct device
|
27 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
28 |
model.to(device)
|
29 |
+
@spaces.GPU
|
30 |
# Define the respond function
|
31 |
def respond(
|
32 |
message,
|