import gradio as gr from huggingface_hub import InferenceClient from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig import torch import spaces import os IS_SPACES_ZERO = os.environ.get("SPACES_ZERO_GPU", "0") == "1" IS_SPACE = os.environ.get("SPACE_ID", None) is not None device = "cuda" if torch.cuda.is_available() else "cpu" LOW_MEMORY = os.getenv("LOW_MEMORY", "0") == "1" print(f"Using device: {device}") print(f"low memory: {LOW_MEMORY}") # Define BitsAndBytesConfig bnb_config = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.float16) # Model name model_name = "ruslanmv/Medical-Llama3-v2" # Load tokenizer and model with BitsAndBytesConfig tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, bnb_config=bnb_config) model = AutoModelForCausalLM.from_pretrained(model_name, config=bnb_config) # Ensure model is on the correct device device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) @spaces.GPU # Define the respond function def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) # Format the conversation as a single string for the model prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) inputs = tokenizer(prompt, return_tensors="pt", truncation=True, padding=True, max_length=512) # Move inputs to device input_ids = inputs['input_ids'].to(device) attention_mask = inputs['attention_mask'].to(device) # Generate the response with torch.no_grad(): outputs = model.generate( input_ids=input_ids, attention_mask=attention_mask, max_length=max_tokens, temperature=temperature, top_p=top_p, use_cache=True ) # Extract the response response_text = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0] # Remove the prompt and system message from the response response_text = response_text.replace(system_message, '').strip() response_text = response_text.replace(f"Human: {message}\n\nAssistant: ", '').strip() return response_text # Create the Gradio interface demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a Medical AI Assistant. Please be thorough and provide an informative answer. If you don't know the answer to a specific medical inquiry, advise seeking professional help.", label="System message", lines=3), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.8, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="Top-p (nucleus sampling)"), ], title="Medical AI Assistant", description="Give me your symptoms and ask me a health problem. The AI will provide informative answers. If the AI doesn't know the answer, it will advise seeking professional help.", examples=[["I'm a 35-year-old male and for the past few months, I've been experiencing fatigue, increased sensitivity to cold, and dry, itchy skin. Could these symptoms be related to hypothyroidism?"], ["I have a headache and a fever. What should I do?"], ["How can I improve my sleep?"]], ) if __name__ == "__main__": demo.launch()