Spaces:
Running
Running
import os | |
import gradio as gr | |
from huggingface_hub import hf_hub_download | |
from langchain.chains import RetrievalQA | |
from langchain_community.vectorstores import FAISS | |
from langchain_community.embeddings import HuggingFaceEmbeddings | |
from langchain_community.llms import LlamaCpp | |
REPO_ID = "ryota39/gemma-2-2b-jpn-it-q8" | |
FILENAME = "gemma-2-2b-jpn-it-Q8_0.gguf" | |
def get_model_path(): | |
return hf_hub_download( | |
repo_id=REPO_ID, | |
filename=FILENAME, | |
repo_type="model", | |
) | |
GGUF_MODEL_PATH = get_model_path() | |
VECTOR_DB_PATH = "./vectorstore/ruri-large" | |
EMBEDDING_MODEL = "cl-nagoya/ruri-large" | |
class RAGSystem: | |
def __init__(self): | |
self.vectorstore = None | |
self.qa_chain = None | |
self.setup_models() | |
def setup_models(self): | |
self.embeddings = HuggingFaceEmbeddings( | |
model_name=EMBEDDING_MODEL, | |
model_kwargs={"device": "cpu"}, | |
) | |
try: | |
self.load_vectorstore() | |
except Exception as e: | |
print(f"ベクトルDBの読み込みに失敗しました: {str(e)}") | |
try: | |
self.llm = LlamaCpp( | |
model_path=GGUF_MODEL_PATH, | |
temperature=0.7, | |
max_tokens=512, | |
n_ctx=2048, # コンテキスト長 | |
n_threads=8, # 使用するCPUスレッド数 | |
n_gpu_layers=-1, # 可能であればGPUレイヤーを全て使用 | |
verbose=False, | |
streaming=True, | |
model_kwargs={"f16_kv": True}, | |
) | |
if self.vectorstore: | |
self.setup_qa_chain() | |
except Exception as e: | |
print(f"LLMの読み込みに失敗しました: {str(e)}") | |
def load_vectorstore(self): | |
if os.path.exists(VECTOR_DB_PATH): | |
self.vectorstore = FAISS.load_local( | |
VECTOR_DB_PATH, | |
self.embeddings, | |
allow_dangerous_deserialization=True, | |
) | |
if self.llm: | |
self.setup_qa_chain() | |
return True | |
return False | |
def setup_qa_chain(self): | |
if self.vectorstore and self.llm: | |
self.qa_chain = RetrievalQA.from_chain_type( | |
llm=self.llm, | |
chain_type="stuff", | |
retriever=self.vectorstore.as_retriever(search_kwargs={"k": 3}), | |
) | |
return True | |
return False | |
def answer_question_stream(self, question): | |
if not self.qa_chain: | |
if not self.vectorstore: | |
yield "ベクトルDBが読み込まれていません。" | |
return | |
if not self.llm: | |
yield "LLMモデルが読み込まれていません。" | |
return | |
yield "QAチェーンの初期化に失敗しました。" | |
return | |
try: | |
docs = self.vectorstore.similarity_search(question, k=3) | |
context = "\n\n".join([doc.page_content for doc in docs]) | |
prompt = f"""与えられた文書を用いて、質問に対する適切な応答を書きなさい。 | |
文書: {context} | |
質問: {question} | |
応答: """ | |
response = "" | |
for chunk in self.llm._stream(prompt): | |
if isinstance(chunk, str): | |
response += chunk | |
else: | |
response += chunk.text | |
yield response | |
except Exception as e: | |
yield f"回答生成中にエラーが発生しました: {str(e)}" | |
def get_system_status(self): | |
status = list() | |
if os.path.exists(GGUF_MODEL_PATH): | |
model_size = os.path.getsize(GGUF_MODEL_PATH) / (1024 * 1024 * 1024) | |
status.append( | |
f"✅ LLMモデル: {os.path.basename(GGUF_MODEL_PATH)} ({model_size:.2f} GB)" | |
) | |
else: | |
status.append(f"❌ LLMモデル: {GGUF_MODEL_PATH} が見つかりません") | |
if os.path.exists(VECTOR_DB_PATH): | |
status.append(f"✅ ベクトルDB: {VECTOR_DB_PATH}") | |
else: | |
status.append(f"❌ ベクトルDB: {VECTOR_DB_PATH} が見つかりません") | |
status.append(f"✅ 埋め込みモデル: {EMBEDDING_MODEL}") | |
if self.qa_chain: | |
status.append("✅ RAGシステム: 準備完了") | |
else: | |
status.append("❌ RAGシステム: 初期化されていません") | |
return "\n".join(status) | |
rag_system = RAGSystem() | |
with gr.Blocks(title="RAGデモアプリ") as demo: | |
gr.Markdown("# 🎇 Sake RAG デモアプリ") | |
gr.Markdown("醸造協会誌5年分のデータをベクトルDBとして保持した2B級の小型モデルです") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
refresh_button = gr.Button("システム状態を更新", variant="secondary") | |
status_output = gr.Textbox( | |
label="システム状態", | |
value=rag_system.get_system_status(), | |
interactive=False, | |
lines=5, | |
) | |
with gr.Column(scale=2): | |
question_input = gr.Textbox( | |
label="質問を入力してください", | |
placeholder="質問を入力してください", | |
lines=2, | |
) | |
submit_button = gr.Button("質問する", variant="primary") | |
answer_output = gr.Textbox(label="回答", interactive=False, lines=10) | |
refresh_button.click( | |
fn=rag_system.get_system_status, | |
inputs=[], | |
outputs=[status_output], | |
) | |
submit_button.click( | |
fn=rag_system.answer_question_stream, | |
inputs=[question_input], | |
outputs=[answer_output], | |
) | |
if __name__ == "__main__": | |
demo.launch() | |