innofinderai / app.py
isayahc's picture
initilized envars from ini to .env
1adc988
raw
history blame
4.07 kB
from fastapi import FastAPI
import gradio as gr
from gradio.themes.base import Base
from innovation_pathfinder_ai.agents.hf_mixtral_agent import agent_executor
from innovation_pathfinder_ai.source_container.container import (
all_sources
)
from innovation_pathfinder_ai.utils.utils import extract_urls
from innovation_pathfinder_ai.utils import logger
from innovation_pathfinder_ai.utils.utils import (
generate_uuid
)
from langchain_community.vectorstores import Chroma
import chromadb
import dotenv
import os
dotenv.load_dotenv()
persist_directory = os.getenv('VECTOR_DATABASE_LOCATION')
logger = logger.get_console_logger("app")
app = FastAPI()
def initialize_chroma_db() -> Chroma:
collection_name = os.getenv('CONVERSATION_COLLECTION_NAME')
client = chromadb.PersistentClient(
path=persist_directory
)
collection = client.get_or_create_collection(
name=collection_name,
)
return collection
if __name__ == "__main__":
db = initialize_chroma_db()
def add_text(history, text):
history = history + [(text, None)]
return history, ""
def bot(history):
response = infer(history[-1][0], history)
sources = extract_urls(all_sources)
src_list = '\n'.join(sources)
current_id = generate_uuid()
db.add(
ids=[current_id],
documents=[response['output']],
metadatas=[
{
"human_message":history[-1][0],
"sources": 'Internal Knowledge Base From: \n\n' + src_list
}
]
)
if not sources:
response_w_sources = response['output']+"\n\n\n Sources: \n\n\n Internal knowledge base"
else:
response_w_sources = response['output']+"\n\n\n Sources: \n\n\n"+src_list
history[-1][1] = response_w_sources
all_sources.clear()
return history
def infer(question, history):
query = question
result = agent_executor.invoke(
{
"input": question,
"chat_history": history
}
)
return result
def vote(data: gr.LikeData):
if data.liked:
print("You upvoted this response: " + data.value)
else:
print("You downvoted this response: " + data.value)
css="""
#col-container {max-width: 700px; margin-left: auto; margin-right: auto;}
"""
title = """
<div style="text-align:left;">
<p>Hello Human, I am your AI knowledge research assistant. I can explore topics across ArXiv, Wikipedia and use Google search.<br />
</div>
"""
with gr.Blocks(theme=gr.themes.Soft(), title="AlfredAI - AI Knowledge Research Assistant") as demo:
# with gr.Tab("Google|Wikipedia|Arxiv"):
with gr.Column(elem_id="col-container"):
gr.HTML(title)
with gr.Row():
question = gr.Textbox(label="Question",
placeholder="Type your question and hit Enter",)
chatbot = gr.Chatbot([],
elem_id="AI Assistant",
bubble_full_width=False,
avatar_images=(None, "./innovation_pathfinder_ai/assets/avatar.png"),
height=480,)
chatbot.like(vote, None, None)
clear = gr.Button("Clear")
question.submit(add_text, [chatbot, question], [chatbot, question], queue=False).then(
bot, chatbot, chatbot
)
clear.click(lambda: None, None, chatbot, queue=False)
with gr.Accordion("Open for More!", open=False):
gr.Markdown("Nothing yet...")
demo.queue()
demo.launch(debug=True, favicon_path="innovation_pathfinder_ai/assets/favicon.ico", share=True)
x = 0 # for debugging purposes
app = gr.mount_gradio_app(app, demo, path="/")