Asaad Almutareb
moved ollama agent to it's own folder
631f6af
raw
history blame
3.23 kB
# LangChain supports many other chat models. Here, we're using Ollama
from langchain_community.chat_models import ChatOllama
from langchain_core.prompts import ChatPromptTemplate
from langchain import hub
from langchain.agents import AgentExecutor
from langchain.agents.format_scratchpad import format_log_to_str
from langchain.agents.output_parsers import (
ReActJsonSingleInputOutputParser,
)
# Import things that are needed generically
from typing import List, Dict
from langchain.tools.render import render_text_description
import os
import dotenv
from innovation_pathfinder_ai.structured_tools.structured_tools import (
arxiv_search, get_arxiv_paper, google_search
)
# hacky and should be replaced with a database
from innovation_pathfinder_ai.source_container.container import (
all_sources
)
dotenv.load_dotenv()
OLLMA_BASE_URL = os.getenv("OLLMA_BASE_URL")
# supports many more optional parameters. Hover on your `ChatOllama(...)`
# class to view the latest available supported parameters
llm = ChatOllama(
model="mistral:instruct",
base_url= OLLMA_BASE_URL
)
tools = [
arxiv_search,
google_search,
get_arxiv_paper,
]
prompt = hub.pull("hwchase17/react-json")
prompt = prompt.partial(
tools=render_text_description(tools),
tool_names=", ".join([t.name for t in tools]),
)
# define the agent
chat_model_with_stop = llm.bind(stop=["\nObservation"])
agent = (
{
"input": lambda x: x["input"],
"agent_scratchpad": lambda x: format_log_to_str(x["intermediate_steps"]),
}
| prompt
| chat_model_with_stop
| ReActJsonSingleInputOutputParser()
)
# instantiate AgentExecutor
agent_executor = AgentExecutor(
agent=agent,
tools=tools,
verbose=True,
# handle_parsing_errors=True #prevents error
)
if __name__ == "__main__":
input = agent_executor.invoke(
{
"input": "How to generate videos from images using state of the art macchine learning models; Using the axriv retriever " +
"add the urls of the papers used in the final answer using the metadata from the retriever please do not use '`' " +
"please use the `download_arxiv_paper` tool to download any axriv paper you find" +
"Please only use the tools provided to you"
# f"Please prioritize the newest papers this is the current data {get_current_date()}"
}
)
# input_1 = agent_executor.invoke(
# {
# "input": "I am looking for a text to 3d model; Using the axriv retriever " +
# "add the urls of the papers used in the final answer using the metadata from the retriever"
# # f"Please prioritize the newest papers this is the current data {get_current_date()}"
# }
# )
# input_2 = agent_executor.invoke(
# {
# "input": "I am looking for a text to 3d model; Using the google search tool " +
# "add the urls in the final answer using the metadata from the retriever, also provid a summary of the searches"
# # f"Please prioritize the newest papers this is the current data {get_current_date()}"
# }
# )
x = 0 # for debugging purposes