Spaces:
Runtime error
Runtime error
Created using Colaboratory
Browse files
Copy_of_local_ollama_agent_.ipynb
ADDED
@@ -0,0 +1,315 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"nbformat": 4,
|
3 |
+
"nbformat_minor": 0,
|
4 |
+
"metadata": {
|
5 |
+
"colab": {
|
6 |
+
"provenance": [],
|
7 |
+
"authorship_tag": "ABX9TyPaNjrQ4/vWL00DhJIGcmSl",
|
8 |
+
"include_colab_link": true
|
9 |
+
},
|
10 |
+
"kernelspec": {
|
11 |
+
"name": "python3",
|
12 |
+
"display_name": "Python 3"
|
13 |
+
},
|
14 |
+
"language_info": {
|
15 |
+
"name": "python"
|
16 |
+
}
|
17 |
+
},
|
18 |
+
"cells": [
|
19 |
+
{
|
20 |
+
"cell_type": "markdown",
|
21 |
+
"metadata": {
|
22 |
+
"id": "view-in-github",
|
23 |
+
"colab_type": "text"
|
24 |
+
},
|
25 |
+
"source": [
|
26 |
+
"<a href=\"https://colab.research.google.com/github/almutareb/InnovationPathfinderAI/blob/agent_notebook/Copy_of_local_ollama_agent_.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
|
27 |
+
]
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"cell_type": "code",
|
31 |
+
"source": [
|
32 |
+
"!pip install -U langchain_community -q\n",
|
33 |
+
"!pip install -U langchain -q\n",
|
34 |
+
"!pip install google-search-results -q\n",
|
35 |
+
"!pip install langchainhub -q\n",
|
36 |
+
"!pip install text_generation -q\n",
|
37 |
+
"!pip install arxiv -q"
|
38 |
+
],
|
39 |
+
"metadata": {
|
40 |
+
"id": "W125o44IGdna",
|
41 |
+
"colab": {
|
42 |
+
"base_uri": "https://localhost:8080/"
|
43 |
+
},
|
44 |
+
"outputId": "c746bf1e-0b97-4eab-c94d-a7f417980d8b"
|
45 |
+
},
|
46 |
+
"execution_count": 1,
|
47 |
+
"outputs": [
|
48 |
+
{
|
49 |
+
"output_type": "stream",
|
50 |
+
"name": "stdout",
|
51 |
+
"text": [
|
52 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.7/1.7 MB\u001b[0m \u001b[31m11.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
53 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m241.2/241.2 kB\u001b[0m \u001b[31m11.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
54 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m56.5/56.5 kB\u001b[0m \u001b[31m5.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
55 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m49.4/49.4 kB\u001b[0m \u001b[31m3.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
56 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m55.4/55.4 kB\u001b[0m \u001b[31m4.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
57 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m815.9/815.9 kB\u001b[0m \u001b[31m7.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
58 |
+
"\u001b[?25h Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
|
59 |
+
" Building wheel for google-search-results (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
|
60 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m81.1/81.1 kB\u001b[0m \u001b[31m2.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
61 |
+
"\u001b[?25h Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
|
62 |
+
" Building wheel for sgmllib3k (setup.py) ... \u001b[?25l\u001b[?25hdone\n"
|
63 |
+
]
|
64 |
+
}
|
65 |
+
]
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"cell_type": "code",
|
69 |
+
"source": [
|
70 |
+
"import os\n",
|
71 |
+
"from google.colab import userdata\n",
|
72 |
+
"os.environ[\"HUGGINGFACEHUB_API_TOKEN\"] = userdata.get('HUGGINGFACEHUB_API_TOKEN')\n",
|
73 |
+
"os.environ[\"SERPAPI_API_KEY\"] = userdata.get('SERPAPI_API_KEY')"
|
74 |
+
],
|
75 |
+
"metadata": {
|
76 |
+
"id": "yXd9TTjoK439"
|
77 |
+
},
|
78 |
+
"execution_count": 2,
|
79 |
+
"outputs": []
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"cell_type": "code",
|
83 |
+
"execution_count": 7,
|
84 |
+
"metadata": {
|
85 |
+
"colab": {
|
86 |
+
"base_uri": "https://localhost:8080/"
|
87 |
+
},
|
88 |
+
"id": "sOrq-hGZGZ_r",
|
89 |
+
"outputId": "15f1040e-2e50-40dc-f1ef-bdff72097228"
|
90 |
+
},
|
91 |
+
"outputs": [
|
92 |
+
{
|
93 |
+
"output_type": "stream",
|
94 |
+
"name": "stdout",
|
95 |
+
"text": [
|
96 |
+
" Why don't astronauts forget things in space?\n",
|
97 |
+
"\n",
|
98 |
+
"Because in space, they weightless information! 💡🚀\n",
|
99 |
+
"\n",
|
100 |
+
"(This one is an oldie but goodie!)\n"
|
101 |
+
]
|
102 |
+
}
|
103 |
+
],
|
104 |
+
"source": [
|
105 |
+
"# LangChain supports many other chat models. Here, we're using Ollama\n",
|
106 |
+
"from langchain_community.chat_models import ChatOllama\n",
|
107 |
+
"from langchain_core.output_parsers import StrOutputParser\n",
|
108 |
+
"from langchain_core.prompts import ChatPromptTemplate\n",
|
109 |
+
"\n",
|
110 |
+
"# supports many more optional parameters. Hover on your `ChatOllama(...)`\n",
|
111 |
+
"# class to view the latest available supported parameters\n",
|
112 |
+
"llm = ChatOllama(\n",
|
113 |
+
" model=\"mistral\",\n",
|
114 |
+
" base_url=\"https://0013-35-201-206-176.ngrok-free.app\"\n",
|
115 |
+
" )\n",
|
116 |
+
"prompt = ChatPromptTemplate.from_template(\"Tell me a short joke about {topic}\")\n",
|
117 |
+
"\n",
|
118 |
+
"# using LangChain Expressive Language chain syntax\n",
|
119 |
+
"# learn more about the LCEL on\n",
|
120 |
+
"# https://python.langchain.com/docs/expression_language/why\n",
|
121 |
+
"chain = prompt | llm | StrOutputParser()\n",
|
122 |
+
"\n",
|
123 |
+
"# for brevity, response is printed in terminal\n",
|
124 |
+
"# You can use LangServe to deploy your application for\n",
|
125 |
+
"# production\n",
|
126 |
+
"print(chain.invoke({\"topic\": \"Space travel\"}))"
|
127 |
+
]
|
128 |
+
},
|
129 |
+
{
|
130 |
+
"cell_type": "code",
|
131 |
+
"source": [
|
132 |
+
"from langchain.tools.retriever import create_retriever_tool\n",
|
133 |
+
"from langchain_community.utilities import SerpAPIWrapper\n",
|
134 |
+
"from langchain.retrievers import ArxivRetriever\n",
|
135 |
+
"from langchain_core.tools import Tool\n",
|
136 |
+
"\n",
|
137 |
+
"retriever = ArxivRetriever(load_max_docs=2)\n",
|
138 |
+
"\n",
|
139 |
+
"tools = [create_retriever_tool(\n",
|
140 |
+
" retriever,\n",
|
141 |
+
" \"search arxiv's database for\",\n",
|
142 |
+
" \"Use this to recomend the user a paper to read Unless stated please choose the most recent models\",\n",
|
143 |
+
" # \"Searches and returns excerpts from the 2022 State of the Union.\",\n",
|
144 |
+
"),\n",
|
145 |
+
"\n",
|
146 |
+
"Tool(\n",
|
147 |
+
" name=\"SerpAPI\",\n",
|
148 |
+
" description=\"A low-cost Google Search API. Useful for when you need to answer questions about current events. Input should be a search query.\",\n",
|
149 |
+
" func=SerpAPIWrapper().run,\n",
|
150 |
+
")\n",
|
151 |
+
"\n",
|
152 |
+
"]\n",
|
153 |
+
"\n",
|
154 |
+
"# tools = [tool]"
|
155 |
+
],
|
156 |
+
"metadata": {
|
157 |
+
"id": "tn5XMqCVeaQK"
|
158 |
+
},
|
159 |
+
"execution_count": 8,
|
160 |
+
"outputs": []
|
161 |
+
},
|
162 |
+
{
|
163 |
+
"cell_type": "code",
|
164 |
+
"source": [
|
165 |
+
"from langchain import hub\n",
|
166 |
+
"from langchain.agents import AgentExecutor, load_tools\n",
|
167 |
+
"from langchain.agents.format_scratchpad import format_log_to_str\n",
|
168 |
+
"from langchain.agents.output_parsers import (\n",
|
169 |
+
" ReActJsonSingleInputOutputParser,\n",
|
170 |
+
")\n",
|
171 |
+
"from langchain.tools.render import render_text_description\n",
|
172 |
+
"# from langchain_community.utilities import SerpAPIWrapper\n",
|
173 |
+
"# from langchain.retrievers import ArxivRetriever\n",
|
174 |
+
"\n",
|
175 |
+
"# setup tools\n",
|
176 |
+
"# tools = load_tools([\"serpapi\", \"llm-math\"], llm=llm)\n",
|
177 |
+
"\n",
|
178 |
+
"# tools = load_tools([\"serpapi\", \"llm-math\",create_retriever_tool], llm=llm)\n",
|
179 |
+
"\n",
|
180 |
+
"# setup ReAct style prompt\n",
|
181 |
+
"prompt = hub.pull(\"hwchase17/react-json\")\n",
|
182 |
+
"prompt = prompt.partial(\n",
|
183 |
+
" tools=render_text_description(tools),\n",
|
184 |
+
" tool_names=\", \".join([t.name for t in tools]),\n",
|
185 |
+
")\n",
|
186 |
+
"\n",
|
187 |
+
"chat_model = llm\n",
|
188 |
+
"# define the agent\n",
|
189 |
+
"chat_model_with_stop = chat_model.bind(stop=[\"\\nObservation\"])\n",
|
190 |
+
"agent = (\n",
|
191 |
+
" {\n",
|
192 |
+
" \"input\": lambda x: x[\"input\"],\n",
|
193 |
+
" \"agent_scratchpad\": lambda x: format_log_to_str(x[\"intermediate_steps\"]),\n",
|
194 |
+
" }\n",
|
195 |
+
" | prompt\n",
|
196 |
+
" | chat_model_with_stop\n",
|
197 |
+
" | ReActJsonSingleInputOutputParser()\n",
|
198 |
+
")\n",
|
199 |
+
"\n",
|
200 |
+
"# instantiate AgentExecutor\n",
|
201 |
+
"agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True,handle_parsing_errors=True)\n",
|
202 |
+
"\n",
|
203 |
+
"# agent_executor.invoke(\n",
|
204 |
+
"# {\n",
|
205 |
+
"# \"input\": \"Who is the current holder of the speed skating world record on 500 meters? What is her current age raised to the 0.43 power?\"\n",
|
206 |
+
"# }\n",
|
207 |
+
"# )\n",
|
208 |
+
"\n",
|
209 |
+
"# agent_executor.invoke(\n",
|
210 |
+
"# {\n",
|
211 |
+
"# \"input\": \"what are large language models and why are they so expensive to run?\"\n",
|
212 |
+
"# }\n",
|
213 |
+
"# )\n",
|
214 |
+
"\n",
|
215 |
+
"agent_executor.invoke(\n",
|
216 |
+
" {\n",
|
217 |
+
" \"input\": \"How to generate videos from images using state of the art macchine learning models\"\n",
|
218 |
+
" }\n",
|
219 |
+
")\n",
|
220 |
+
"\n",
|
221 |
+
"\n"
|
222 |
+
],
|
223 |
+
"metadata": {
|
224 |
+
"colab": {
|
225 |
+
"base_uri": "https://localhost:8080/"
|
226 |
+
},
|
227 |
+
"id": "VzcIqgcDKZuZ",
|
228 |
+
"outputId": "99fe8de1-8539-4fe9-ae24-576aad0daee6"
|
229 |
+
},
|
230 |
+
"execution_count": 9,
|
231 |
+
"outputs": [
|
232 |
+
{
|
233 |
+
"output_type": "stream",
|
234 |
+
"name": "stdout",
|
235 |
+
"text": [
|
236 |
+
"\n",
|
237 |
+
"\n",
|
238 |
+
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
|
239 |
+
"\u001b[32;1m\u001b[1;3m Thought: To find the most recent papers on generating videos from images using machine learning models, I will use the \"search arxiv's database for\" tool.\n",
|
240 |
+
"\n",
|
241 |
+
"Action:\n",
|
242 |
+
"```json\n",
|
243 |
+
"{\n",
|
244 |
+
" \"action\": \"search arxiv's database for\",\n",
|
245 |
+
" \"action_input\": \"generating videos from images machine learning\"\n",
|
246 |
+
"}\n",
|
247 |
+
"```\u001b[0m\u001b[36;1m\u001b[1;3mDiffusion models exhibited tremendous progress in image and video generation,\n",
|
248 |
+
"exceeding GANs in quality and diversity. However, they are usually trained on\n",
|
249 |
+
"very large datasets and are not naturally adapted to manipulate a given input\n",
|
250 |
+
"image or video. In this paper we show how this can be resolved by training a\n",
|
251 |
+
"diffusion model on a single input image or video. Our image/video-specific\n",
|
252 |
+
"diffusion model (SinFusion) learns the appearance and dynamics of the single\n",
|
253 |
+
"image or video, while utilizing the conditioning capabilities of diffusion\n",
|
254 |
+
"models. It can solve a wide array of image/video-specific manipulation tasks.\n",
|
255 |
+
"In particular, our model can learn from few frames the motion and dynamics of a\n",
|
256 |
+
"single input video. It can then generate diverse new video samples of the same\n",
|
257 |
+
"dynamic scene, extrapolate short videos into long ones (both forward and\n",
|
258 |
+
"backward in time) and perform video upsampling. Most of these tasks are not\n",
|
259 |
+
"realizable by current video-specific generation methods.\n",
|
260 |
+
"\n",
|
261 |
+
"In this work we deal with the problem of high-level event detection in video.\n",
|
262 |
+
"Specifically, we study the challenging problems of i) learning to detect video\n",
|
263 |
+
"events from solely a textual description of the event, without using any\n",
|
264 |
+
"positive video examples, and ii) additionally exploiting very few positive\n",
|
265 |
+
"training samples together with a small number of ``related'' videos. For\n",
|
266 |
+
"learning only from an event's textual description, we first identify a general\n",
|
267 |
+
"learning framework and then study the impact of different design choices for\n",
|
268 |
+
"various stages of this framework. For additionally learning from example\n",
|
269 |
+
"videos, when true positive training samples are scarce, we employ an extension\n",
|
270 |
+
"of the Support Vector Machine that allows us to exploit ``related'' event\n",
|
271 |
+
"videos by automatically introducing different weights for subsets of the videos\n",
|
272 |
+
"in the overall training set. Experimental evaluations performed on the\n",
|
273 |
+
"large-scale TRECVID MED 2014 video dataset provide insight on the effectiveness\n",
|
274 |
+
"of the proposed methods.\n",
|
275 |
+
"\n",
|
276 |
+
"We study the problem of video-to-video synthesis, whose goal is to learn a\n",
|
277 |
+
"mapping function from an input source video (e.g., a sequence of semantic\n",
|
278 |
+
"segmentation masks) to an output photorealistic video that precisely depicts\n",
|
279 |
+
"the content of the source video. While its image counterpart, the\n",
|
280 |
+
"image-to-image synthesis problem, is a popular topic, the video-to-video\n",
|
281 |
+
"synthesis problem is less explored in the literature. Without understanding\n",
|
282 |
+
"temporal dynamics, directly applying existing image synthesis approaches to an\n",
|
283 |
+
"input video often results in temporally incoherent videos of low visual\n",
|
284 |
+
"quality. In this paper, we propose a novel video-to-video synthesis approach\n",
|
285 |
+
"under the generative adversarial learning framework. Through carefully-designed\n",
|
286 |
+
"generator and discriminator architectures, coupled with a spatio-temporal\n",
|
287 |
+
"adversarial objective, we achieve high-resolution, photorealistic, temporally\n",
|
288 |
+
"coherent video results on a diverse set of input formats including segmentation\n",
|
289 |
+
"masks, sketches, and poses. Experiments on multiple benchmarks show the\n",
|
290 |
+
"advantage of our method compared to strong baselines. In particular, our model\n",
|
291 |
+
"is capable of synthesizing 2K resolution videos of street scenes up to 30\n",
|
292 |
+
"seconds long, which significantly advances the state-of-the-art of video\n",
|
293 |
+
"synthesis. Finally, we apply our approach to future video prediction,\n",
|
294 |
+
"outperforming several state-of-the-art competing systems.\u001b[0m\u001b[32;1m\u001b[1;3m This paper discusses several recent studies on generating videos from images using machine learning models. One study introduces SinFusion, a diffusion model that learns the appearance and dynamics of a single image or video for various manipulation tasks. Another study deals with high-level event detection in videos, learning from textual descriptions and exploiting related videos. The third study proposes a novel video-to-video synthesis approach under the generative adversarial learning framework to achieve photorealistic, temporally coherent videos.\n",
|
295 |
+
"\n",
|
296 |
+
"Final Answer: There are recent studies that discuss generating videos from images using machine learning models. One study introduces SinFusion, a diffusion model for image/video-specific manipulation tasks. Another study deals with high-level event detection in videos using textual descriptions and related videos. The third study proposes a novel video-to-video synthesis approach under the generative adversarial learning framework to achieve photorealistic, temporally coherent videos.\u001b[0m\n",
|
297 |
+
"\n",
|
298 |
+
"\u001b[1m> Finished chain.\u001b[0m\n"
|
299 |
+
]
|
300 |
+
},
|
301 |
+
{
|
302 |
+
"output_type": "execute_result",
|
303 |
+
"data": {
|
304 |
+
"text/plain": [
|
305 |
+
"{'input': 'How to generate videos from images using state of the art macchine learning models',\n",
|
306 |
+
" 'output': 'There are recent studies that discuss generating videos from images using machine learning models. One study introduces SinFusion, a diffusion model for image/video-specific manipulation tasks. Another study deals with high-level event detection in videos using textual descriptions and related videos. The third study proposes a novel video-to-video synthesis approach under the generative adversarial learning framework to achieve photorealistic, temporally coherent videos.'}"
|
307 |
+
]
|
308 |
+
},
|
309 |
+
"metadata": {},
|
310 |
+
"execution_count": 9
|
311 |
+
}
|
312 |
+
]
|
313 |
+
}
|
314 |
+
]
|
315 |
+
}
|