Spaces:
Sleeping
Sleeping
Created using Colaboratory
Browse files
🤖_AutoQuantize_(GGUF,_AWQ,_EXL2,_GPTQ).ipynb
ADDED
@@ -0,0 +1,316 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"nbformat": 4,
|
3 |
+
"nbformat_minor": 0,
|
4 |
+
"metadata": {
|
5 |
+
"colab": {
|
6 |
+
"provenance": [],
|
7 |
+
"gpuType": "T4",
|
8 |
+
"include_colab_link": true
|
9 |
+
},
|
10 |
+
"kernelspec": {
|
11 |
+
"name": "python3",
|
12 |
+
"display_name": "Python 3"
|
13 |
+
},
|
14 |
+
"language_info": {
|
15 |
+
"name": "python"
|
16 |
+
},
|
17 |
+
"accelerator": "GPU"
|
18 |
+
},
|
19 |
+
"cells": [
|
20 |
+
{
|
21 |
+
"cell_type": "markdown",
|
22 |
+
"metadata": {
|
23 |
+
"id": "view-in-github",
|
24 |
+
"colab_type": "text"
|
25 |
+
},
|
26 |
+
"source": [
|
27 |
+
"<a href=\"https://colab.research.google.com/github/almutareb/InnovationPathfinderAI/blob/main/%F0%9F%A4%96_AutoQuantize_(GGUF%2C_AWQ%2C_EXL2%2C_GPTQ).ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
|
28 |
+
]
|
29 |
+
},
|
30 |
+
{
|
31 |
+
"cell_type": "code",
|
32 |
+
"source": [
|
33 |
+
"# @title # 🤖 AutoQuantize\n",
|
34 |
+
"\n",
|
35 |
+
"# @markdown 🔮 Created by [@zainulabideen](https://huggingface.co/abideen).\n",
|
36 |
+
"\n",
|
37 |
+
"# @markdown Please add HF token to the secrets tab in Google Colab before.\n",
|
38 |
+
"\n",
|
39 |
+
"# @markdown Quantization formats supported: `GGUF`, `AWQ`, `EXL2`, `GPTQ`\n",
|
40 |
+
"\n",
|
41 |
+
"# @markdown ---\n",
|
42 |
+
"\n",
|
43 |
+
"\n",
|
44 |
+
"# @markdown ### 🤗 Hugging Face Hub\n",
|
45 |
+
"\n",
|
46 |
+
"MODEL_ID = \"abideen/Heimer-dpo-TinyLlama-1.1B\" # @param {type:\"string\"}\n",
|
47 |
+
"MODEL_NAME = MODEL_ID.split('/')[-1]\n",
|
48 |
+
"\n",
|
49 |
+
"# Download model\n",
|
50 |
+
"!git lfs install\n",
|
51 |
+
"!git clone https://huggingface.co/{MODEL_ID}\n",
|
52 |
+
"\n",
|
53 |
+
"username = \"abideen\" # @param {type:\"string\"}\n",
|
54 |
+
"token = \"\" # @param {type:\"string\"}\n",
|
55 |
+
"!pip install -q huggingface_hub\n",
|
56 |
+
"from huggingface_hub import create_repo, HfApi\n",
|
57 |
+
"from google.colab import userdata, runtime"
|
58 |
+
],
|
59 |
+
"metadata": {
|
60 |
+
"id": "fD24jJxq7t3k",
|
61 |
+
"cellView": "form"
|
62 |
+
},
|
63 |
+
"execution_count": null,
|
64 |
+
"outputs": []
|
65 |
+
},
|
66 |
+
{
|
67 |
+
"cell_type": "code",
|
68 |
+
"source": [
|
69 |
+
"# @title # 🛸 GGUF\n",
|
70 |
+
"# @markdown ### ✨ Quantization parameters\n",
|
71 |
+
"\n",
|
72 |
+
"QUANTIZATION_FORMAT = \"q4_k_m\" # @param {type:\"string\"}\n",
|
73 |
+
"QUANTIZATION_METHODS = QUANTIZATION_FORMAT.replace(\" \", \"\").split(\",\")\n",
|
74 |
+
"# Install llama.cpp\n",
|
75 |
+
"!git clone https://github.com/ggerganov/llama.cpp\n",
|
76 |
+
"!cd llama.cpp && git pull && make clean && LLAMA_CUBLAS=1 make\n",
|
77 |
+
"!pip install -r llama.cpp/requirements.txt\n",
|
78 |
+
"\n",
|
79 |
+
"# Convert to fp16\n",
|
80 |
+
"fp16 = f\"{MODEL_NAME}/{MODEL_NAME.lower()}.fp16.bin\"\n",
|
81 |
+
"!python llama.cpp/convert.py {MODEL_NAME} --outtype f16 --outfile {fp16}\n",
|
82 |
+
"\n",
|
83 |
+
"# Quantize the model for each method in the QUANTIZATION_METHODS list\n",
|
84 |
+
"for method in QUANTIZATION_METHODS:\n",
|
85 |
+
" qtype = f\"{MODEL_NAME}/{MODEL_NAME.lower()}.{method.upper()}.gguf\"\n",
|
86 |
+
" !./llama.cpp/quantize {fp16} {qtype} {method}\n",
|
87 |
+
"\n",
|
88 |
+
"# Defined in the secrets tab in Google Colab\n",
|
89 |
+
"hf_token = userdata.get(token)\n",
|
90 |
+
"api = HfApi()\n",
|
91 |
+
"\n",
|
92 |
+
"# Create empty repo\n",
|
93 |
+
"create_repo(\n",
|
94 |
+
" repo_id = f\"{username}/{MODEL_NAME}-GGUF\",\n",
|
95 |
+
" repo_type=\"model\",\n",
|
96 |
+
" exist_ok=True,\n",
|
97 |
+
" token=hf_token\n",
|
98 |
+
")\n",
|
99 |
+
"\n",
|
100 |
+
"# Upload gguf files\n",
|
101 |
+
"api.upload_folder(\n",
|
102 |
+
" folder_path=MODEL_NAME,\n",
|
103 |
+
" repo_id=f\"{username}/{MODEL_NAME}-GGUF\",\n",
|
104 |
+
" allow_patterns=[\"*.gguf\",\"$.md\"],\n",
|
105 |
+
" token=hf_token\n",
|
106 |
+
")"
|
107 |
+
],
|
108 |
+
"metadata": {
|
109 |
+
"id": "NL0yGhbe3EFk",
|
110 |
+
"cellView": "form"
|
111 |
+
},
|
112 |
+
"execution_count": null,
|
113 |
+
"outputs": []
|
114 |
+
},
|
115 |
+
{
|
116 |
+
"cell_type": "code",
|
117 |
+
"source": [
|
118 |
+
"# @title # 🏛️ AWQ\n",
|
119 |
+
"# @markdown ### ✨ Quantization parameters\n",
|
120 |
+
"\n",
|
121 |
+
"Q_GROUP_SIZE = 128 # @param {type:\"integer\"}\n",
|
122 |
+
"ZERO_POINT = True # @param {text:\"boolean\"}\n",
|
123 |
+
"W_BIT = 4 # @param {type:\"integer\"}\n",
|
124 |
+
"VERSION = \"GEMM\" # @param {type:\"string\"}\n",
|
125 |
+
"SAFETENSORS = True # @param {text:\"boolean\"}\n",
|
126 |
+
"\n",
|
127 |
+
"# Install AutoAWQ\n",
|
128 |
+
"!git clone https://github.com/casper-hansen/AutoAWQ\n",
|
129 |
+
"%cd AutoAWQ\n",
|
130 |
+
"!pip install -e .\n",
|
131 |
+
"!pip install git+https://github.com/huggingface/transformers\n",
|
132 |
+
"!pip install zstandard\n",
|
133 |
+
"\n",
|
134 |
+
"from awq import AutoAWQForCausalLM\n",
|
135 |
+
"from transformers import AutoTokenizer\n",
|
136 |
+
"\n",
|
137 |
+
"\n",
|
138 |
+
"quant_path = MODEL_NAME + \"-awq\"\n",
|
139 |
+
"quant_config = { \"zero_point\": ZERO_POINT, \"q_group_size\": Q_GROUP_SIZE, \"w_bit\": W_BIT, \"version\": VERSION }\n",
|
140 |
+
"\n",
|
141 |
+
"# Load model\n",
|
142 |
+
"PATH = \"/content/\" + MODEL_NAME\n",
|
143 |
+
"model = AutoAWQForCausalLM.from_pretrained(PATH, safetensors=SAFETENSORS)\n",
|
144 |
+
"tokenizer = AutoTokenizer.from_pretrained(PATH, trust_remote_code=True)\n",
|
145 |
+
"\n",
|
146 |
+
"# Quantize\n",
|
147 |
+
"model.quantize(tokenizer, quant_config=quant_config)\n",
|
148 |
+
"\n",
|
149 |
+
"# Save quantized model\n",
|
150 |
+
"model.save_quantized(quant_path)\n",
|
151 |
+
"tokenizer.save_pretrained(quant_path)\n",
|
152 |
+
"\n",
|
153 |
+
"# Defined in the secrets tab in Google Colab\n",
|
154 |
+
"hf_token = userdata.get(token)\n",
|
155 |
+
"api = HfApi()\n",
|
156 |
+
"\n",
|
157 |
+
"# Create empty repo\n",
|
158 |
+
"create_repo(\n",
|
159 |
+
" repo_id = f\"{username}/{MODEL_NAME}-AWQ\",\n",
|
160 |
+
" repo_type=\"model\",\n",
|
161 |
+
" exist_ok=True,\n",
|
162 |
+
" token=hf_token\n",
|
163 |
+
")\n",
|
164 |
+
"\n",
|
165 |
+
"# Upload awq files\n",
|
166 |
+
"api.upload_folder(\n",
|
167 |
+
" folder_path=quant_path,\n",
|
168 |
+
" repo_id=f\"{username}/{MODEL_NAME}-AWQ\",\n",
|
169 |
+
" token=hf_token\n",
|
170 |
+
")"
|
171 |
+
],
|
172 |
+
"metadata": {
|
173 |
+
"id": "MyyUO2Fj3WHt",
|
174 |
+
"cellView": "form"
|
175 |
+
},
|
176 |
+
"execution_count": null,
|
177 |
+
"outputs": []
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"cell_type": "code",
|
181 |
+
"source": [
|
182 |
+
"# @title # 🔬 EXL2\n",
|
183 |
+
"# @markdown ### ✨ Quantization parameters\n",
|
184 |
+
"\n",
|
185 |
+
"BPW = 5.0 # @param {type:\"number\"}\n",
|
186 |
+
"\n",
|
187 |
+
"# Install ExLLamaV2\n",
|
188 |
+
"!git clone https://github.com/turboderp/exllamav2\n",
|
189 |
+
"!pip install -e exllamav2\n",
|
190 |
+
"\n",
|
191 |
+
"!mv {MODEL_NAME} base_model\n",
|
192 |
+
"!rm base_mode/*.bin\n",
|
193 |
+
"\n",
|
194 |
+
"# Download dataset\n",
|
195 |
+
"!wget https://huggingface.co/datasets/wikitext/resolve/9a9e482b5987f9d25b3a9b2883fc6cc9fd8071b3/wikitext-103-v1/wikitext-test.parquet\n",
|
196 |
+
"\n",
|
197 |
+
"# Quantize model\n",
|
198 |
+
"!mkdir quant\n",
|
199 |
+
"!python exllamav2/convert.py \\\n",
|
200 |
+
" -i base_model \\\n",
|
201 |
+
" -o quant \\\n",
|
202 |
+
" -c wikitext-test.parquet \\\n",
|
203 |
+
" -b {BPW}\n",
|
204 |
+
"\n",
|
205 |
+
"# Copy files\n",
|
206 |
+
"!rm -rf quant/out_tensor\n",
|
207 |
+
"!rsync -av --exclude='*.safetensors' --exclude='.*' ./base_model/ ./quant/\n",
|
208 |
+
"\n",
|
209 |
+
"# Defined in the secrets tab in Google Colab\n",
|
210 |
+
"hf_token = userdata.get(token)\n",
|
211 |
+
"api = HfApi()\n",
|
212 |
+
"\n",
|
213 |
+
"# Create empty repo\n",
|
214 |
+
"create_repo(\n",
|
215 |
+
" repo_id = f\"{username}/{MODEL_NAME}-{BPW:.1f}bpw-exl2\",\n",
|
216 |
+
" repo_type=\"model\",\n",
|
217 |
+
" exist_ok=True,\n",
|
218 |
+
" token=hf_token\n",
|
219 |
+
")\n",
|
220 |
+
"\n",
|
221 |
+
"# Upload exl2 files\n",
|
222 |
+
"api.upload_folder(\n",
|
223 |
+
" folder_path=quant,\n",
|
224 |
+
" repo_id=f\"{username}/{MODEL_NAME}-{BPW:.1f}bpw-exl2\",\n",
|
225 |
+
" token=hf_token\n",
|
226 |
+
")"
|
227 |
+
],
|
228 |
+
"metadata": {
|
229 |
+
"id": "ZC9Nsr9u5WhN",
|
230 |
+
"cellView": "form"
|
231 |
+
},
|
232 |
+
"execution_count": null,
|
233 |
+
"outputs": []
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"cell_type": "code",
|
237 |
+
"source": [
|
238 |
+
"# @title # 📝 GPTQ\n",
|
239 |
+
"# @markdown ### ✨ Quantization parameters\n",
|
240 |
+
"\n",
|
241 |
+
"BITS = 4 # @param {type:\"integer\"}\n",
|
242 |
+
"GROUP_SIZE = 128 # @param {type:\"integer\"}\n",
|
243 |
+
"DAMP_PERCENT = 0.01 # @param {type:\"number\"}\n",
|
244 |
+
"\n",
|
245 |
+
"!BUILD_CUDA_EXT=0 pip install -q auto-gptq transformers\n",
|
246 |
+
"import random\n",
|
247 |
+
"from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig\n",
|
248 |
+
"from datasets import load_dataset\n",
|
249 |
+
"import torch\n",
|
250 |
+
"from transformers import AutoTokenizer\n",
|
251 |
+
"out_dir = MODEL_ID + \"-GPTQ\"\n",
|
252 |
+
"\n",
|
253 |
+
"# Load quantize config, model and tokenizer\n",
|
254 |
+
"quantize_config = BaseQuantizeConfig(\n",
|
255 |
+
" bits=BITS,\n",
|
256 |
+
" group_size=GROUP_SIZE,\n",
|
257 |
+
" damp_percent=DAMP_PERCENT,\n",
|
258 |
+
" desc_act=False,\n",
|
259 |
+
")\n",
|
260 |
+
"PATH = \"/content/\" + MODEL_NAME\n",
|
261 |
+
"model = AutoGPTQForCausalLM.from_pretrained(PATH, quantize_config)\n",
|
262 |
+
"tokenizer = AutoTokenizer.from_pretrained(PATH)\n",
|
263 |
+
"\n",
|
264 |
+
"# Load data and tokenize examples\n",
|
265 |
+
"n_samples = 1024\n",
|
266 |
+
"data = load_dataset(\"allenai/c4\", data_files=\"en/c4-train.00001-of-01024.json.gz\", split=f\"train[:{n_samples*5}]\")\n",
|
267 |
+
"tokenized_data = tokenizer(\"\\n\\n\".join(data['text']), return_tensors='pt')\n",
|
268 |
+
"\n",
|
269 |
+
"# Format tokenized examples\n",
|
270 |
+
"examples_ids = []\n",
|
271 |
+
"for _ in range(n_samples):\n",
|
272 |
+
" i = random.randint(0, tokenized_data.input_ids.shape[1] - tokenizer.model_max_length - 1)\n",
|
273 |
+
" j = i + tokenizer.model_max_length\n",
|
274 |
+
" input_ids = tokenized_data.input_ids[:, i:j]\n",
|
275 |
+
" attention_mask = torch.ones_like(input_ids)\n",
|
276 |
+
" examples_ids.append({'input_ids': input_ids, 'attention_mask': attention_mask})\n",
|
277 |
+
"\n",
|
278 |
+
"# Quantize with GPTQ\n",
|
279 |
+
"model.quantize(\n",
|
280 |
+
" examples_ids,\n",
|
281 |
+
" batch_size=1,\n",
|
282 |
+
" use_triton=True,\n",
|
283 |
+
")\n",
|
284 |
+
"\n",
|
285 |
+
"# Save model and tokenizer\n",
|
286 |
+
"model.save_quantized(out_dir, use_safetensors=True)\n",
|
287 |
+
"tokenizer.save_pretrained(out_dir)\n",
|
288 |
+
"\n",
|
289 |
+
"# Defined in the secrets tab in Google Colab\n",
|
290 |
+
"hf_token = userdata.get(token)\n",
|
291 |
+
"api = HfApi()\n",
|
292 |
+
"\n",
|
293 |
+
"# Create empty repo\n",
|
294 |
+
"create_repo(\n",
|
295 |
+
" repo_id = f\"{username}/{MODEL_NAME}-GPTQ\",\n",
|
296 |
+
" repo_type=\"model\",\n",
|
297 |
+
" exist_ok=True,\n",
|
298 |
+
" token=hf_token\n",
|
299 |
+
")\n",
|
300 |
+
"\n",
|
301 |
+
"# Upload gptq files\n",
|
302 |
+
"api.upload_folder(\n",
|
303 |
+
" folder_path=out_dir,\n",
|
304 |
+
" repo_id=f\"{username}/{MODEL_NAME}-GPTQ\",\n",
|
305 |
+
" token=hf_token\n",
|
306 |
+
")\n"
|
307 |
+
],
|
308 |
+
"metadata": {
|
309 |
+
"id": "OE_R3AXG5Y-F",
|
310 |
+
"cellView": "form"
|
311 |
+
},
|
312 |
+
"execution_count": null,
|
313 |
+
"outputs": []
|
314 |
+
}
|
315 |
+
]
|
316 |
+
}
|