Spaces:
Runtime error
Runtime error
getting famliar with ollama based functions
Browse files- ollama_fucntion_sample.py +76 -0
ollama_fucntion_sample.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# LangChain supports many other chat models. Here, we're using Ollama
|
2 |
+
|
3 |
+
|
4 |
+
# https://python.langchain.com/docs/integrations/chat/ollama_functions
|
5 |
+
# https://python.langchain.com/docs/integrations/chat/ollama
|
6 |
+
|
7 |
+
|
8 |
+
from langchain_community.chat_models import ChatOllama
|
9 |
+
from langchain_core.output_parsers import StrOutputParser
|
10 |
+
from langchain_core.prompts import ChatPromptTemplate
|
11 |
+
from langchain.tools.retriever import create_retriever_tool
|
12 |
+
from langchain_community.utilities import SerpAPIWrapper
|
13 |
+
from langchain.retrievers import ArxivRetriever
|
14 |
+
from langchain_core.tools import Tool
|
15 |
+
from langchain import hub
|
16 |
+
from langchain.agents import AgentExecutor, load_tools
|
17 |
+
from langchain.agents.format_scratchpad import format_log_to_str
|
18 |
+
from langchain.agents.output_parsers import (
|
19 |
+
ReActJsonSingleInputOutputParser,
|
20 |
+
)
|
21 |
+
from langchain.tools.render import render_text_description
|
22 |
+
import os
|
23 |
+
|
24 |
+
import dotenv
|
25 |
+
|
26 |
+
dotenv.load_dotenv()
|
27 |
+
|
28 |
+
|
29 |
+
OLLMA_BASE_URL = os.getenv("OLLMA_BASE_URL")
|
30 |
+
|
31 |
+
|
32 |
+
# supports many more optional parameters. Hover on your `ChatOllama(...)`
|
33 |
+
# class to view the latest available supported parameters
|
34 |
+
llm = ChatOllama(
|
35 |
+
model="mistral:instruct",
|
36 |
+
base_url= OLLMA_BASE_URL
|
37 |
+
)
|
38 |
+
|
39 |
+
from langchain_experimental.llms.ollama_functions import OllamaFunctions
|
40 |
+
|
41 |
+
# model = OllamaFunctions(model="mistral")
|
42 |
+
model = OllamaFunctions(
|
43 |
+
model="mistral:instruct",
|
44 |
+
base_url= OLLMA_BASE_URL
|
45 |
+
)
|
46 |
+
|
47 |
+
|
48 |
+
model = model.bind(
|
49 |
+
functions=[
|
50 |
+
{
|
51 |
+
"name": "get_current_weather",
|
52 |
+
"description": "Get the current weather in a given location",
|
53 |
+
"parameters": {
|
54 |
+
"type": "object",
|
55 |
+
"properties": {
|
56 |
+
"location": {
|
57 |
+
"type": "string",
|
58 |
+
"description": "The city and state, " "e.g. San Francisco, CA",
|
59 |
+
},
|
60 |
+
"unit": {
|
61 |
+
"type": "string",
|
62 |
+
"enum": ["celsius", "fahrenheit"],
|
63 |
+
},
|
64 |
+
},
|
65 |
+
"required": ["location"],
|
66 |
+
},
|
67 |
+
}
|
68 |
+
],
|
69 |
+
function_call={"name": "get_current_weather"},
|
70 |
+
)
|
71 |
+
|
72 |
+
from langchain.schema import HumanMessage
|
73 |
+
|
74 |
+
output = model.invoke("what is the weather in Boston?")
|
75 |
+
|
76 |
+
x=0
|