# HF libraries from langchain_community.llms import HuggingFaceEndpoint from langchain_core.prompts import ChatPromptTemplate from langchain import hub import gradio as gr from langchain.agents import AgentExecutor from langchain.agents.format_scratchpad import format_log_to_str from langchain.agents.output_parsers import ( ReActJsonSingleInputOutputParser, ) # Import things that are needed generically from typing import List, Dict from langchain.tools.render import render_text_description import os from dotenv import load_dotenv from innovation_pathfinder_ai.structured_tools.structured_tools import ( arxiv_search, get_arxiv_paper, google_search, wikipedia_search ) # hacky and should be replaced with a database from innovation_pathfinder_ai.source_container.container import ( all_sources ) from innovation_pathfinder_ai.utils import collect_urls # from langchain_community.chat_message_histories import ChatMessageHistory # from langchain_core.runnables.history import RunnableWithMessageHistory # message_history = ChatMessageHistory() config = load_dotenv(".env") HUGGINGFACEHUB_API_TOKEN = os.getenv('HUGGINGFACEHUB_API_TOKEN') GOOGLE_CSE_ID = os.getenv('GOOGLE_CSE_ID') GOOGLE_API_KEY = os.getenv('GOOGLE_API_KEY') LANGCHAIN_TRACING_V2 = "true" LANGCHAIN_ENDPOINT = "https://api.smith.langchain.com" LANGCHAIN_API_KEY = os.getenv('LANGCHAIN_API_KEY') LANGCHAIN_PROJECT = os.getenv('LANGCHAIN_PROJECT') # Load the model from the Hugging Face Hub llm = HuggingFaceEndpoint(repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1", temperature=0.1, max_new_tokens=1024, repetition_penalty=1.2, return_full_text=False ) tools_all = [ arxiv_search, wikipedia_search, google_search, # get_arxiv_paper, ] tools_papers = [ arxiv_search, get_arxiv_paper, ] prompt = hub.pull("hwchase17/react-json") prompt = prompt.partial( tools=render_text_description(tools), tool_names=", ".join([t.name for t in tools]), ) # define the agent chat_model_with_stop = llm.bind(stop=["\nObservation"]) agent = ( { "input": lambda x: x["input"], "agent_scratchpad": lambda x: format_log_to_str(x["intermediate_steps"]), } | prompt | chat_model_with_stop | ReActJsonSingleInputOutputParser() ) # instantiate AgentExecutor agent_executor_all = AgentExecutor( agent=agent, tools=tools_all, verbose=True, max_iterations=6, # cap number of iterations #max_execution_time=60, # timout at 60 sec return_intermediate_steps=True, handle_parsing_errors=True, ) # instantiate AgentExecutor agent_executor_noweb = AgentExecutor( agent=agent, tools=tools_papers, verbose=True, max_iterations=6, # cap number of iterations #max_execution_time=60, # timout at 60 sec return_intermediate_steps=True, handle_parsing_errors=True, ) if __name__ == "__main__": def add_text(history, text): history = history + [(text, None)] return history, "" def bot(history): response = infer(history[-1][0], history) sources = collect_urls(all_sources) src_list = '\n'.join(sources) response_w_sources = response['output']+"\n\n\n Sources: \n\n\n"+src_list intermediate_steps = response['intermediate_steps'] history[-1][1] = response_w_sources return history def infer(question, history): query = question result = agent_executor_all.invoke( { "input": question, } ) return result def vote(data: gr.LikeData): if data.liked: print("You upvoted this response: " + data.value) else: print("You downvoted this response: " + data.value) css=""" #col-container {max-width: 700px; margin-left: auto; margin-right: auto;} """ title = """
Hello Dave, how can I help today?