from langchain.chains import create_extraction_chain # Schema schema = { "properties": { "name": {"type": "string"}, "height": {"type": "integer"}, "hair_color": {"type": "string"}, }, "required": ["name", "height"], } # Input input = """Alex is 5 feet tall. Claudia is 1 feet taller than Alex and jumps higher than him. Claudia is a brunette and Alex is blonde.""" from langchain_experimental.llms.ollama_functions import OllamaFunctions import os import dotenv dotenv.load_dotenv() OLLMA_BASE_URL = os.getenv("OLLMA_BASE_URL") # supports many more optional parameters. Hover on your `ChatOllama(...)` # class to view the latest available supported parameters model = llm = OllamaFunctions( model="mistral:instruct", base_url= OLLMA_BASE_URL ) # model = OllamaFunctions(model="mistral") # Run chain # llm = OllamaFunctions(model="mistral:instruct", temperature=0) chain = create_extraction_chain(schema, llm) output = chain.run(input) x = 0