from langchain.tools import BaseTool, StructuredTool, tool from langchain_community.retrievers import ArxivRetriever #from langchain_community.utilities import SerpAPIWrapper from langchain_community.tools import WikipediaQueryRun from langchain_community.utilities import WikipediaAPIWrapper #from langchain.tools import Tool from langchain_community.utilities import GoogleSearchAPIWrapper from langchain_community.embeddings.sentence_transformer import ( SentenceTransformerEmbeddings, ) from langchain_community.vectorstores import Chroma import arxiv import ast import chromadb # hacky and should be replaced with a database from innovation_pathfinder_ai.source_container.container import ( all_sources ) from innovation_pathfinder_ai.utils.utils import ( parse_list_to_dicts, format_wiki_summaries, format_arxiv_documents, format_search_results ) from innovation_pathfinder_ai.database.db_handler import ( add_many ) from innovation_pathfinder_ai.vector_store.chroma_vector_store import ( add_pdf_to_vector_store ) from innovation_pathfinder_ai.utils.utils import ( create_wikipedia_urls_from_text, create_folder_if_not_exists, ) import os from configparser import ConfigParser # from innovation_pathfinder_ai.utils import create_wikipedia_urls_from_text config = ConfigParser() config.read('innovation_pathfinder_ai/config.ini') persist_directory = config.get('main', 'VECTOR_DATABASE_LOCATION') @tool def memory_search(query:str) -> str: """Search the memory vector store for existing knowledge and relevent pervious researches. \ This is your primary source to start your search with checking what you already have learned from the past, before going online.""" # Since we have more than one collections we should change the name of this tool client = chromadb.PersistentClient( path=persist_directory, ) collection_name = config.get('main', 'CONVERSATION_COLLECTION_NAME') #store using envar embedding_function = SentenceTransformerEmbeddings( model_name="all-MiniLM-L6-v2", ) vector_db = Chroma( client=client, # client for Chroma collection_name=collection_name, embedding_function=embedding_function, ) retriever = vector_db.as_retriever() docs = retriever.get_relevant_documents(query) return docs.__str__() @tool def knowledgeBase_search(query:str) -> str: """Search the internal knowledge base for research papers and relevent chunks""" # Since we have more than one collections we should change the name of this tool client = chromadb.PersistentClient( path=persist_directory, ) collection_name="ArxivPapers" #store using envar embedding_function = SentenceTransformerEmbeddings( model_name="all-MiniLM-L6-v2", ) vector_db = Chroma( client=client, # client for Chroma collection_name=collection_name, embedding_function=embedding_function, ) retriever = vector_db.as_retriever() docs = retriever.get_relevant_documents(query) return docs.__str__() @tool def arxiv_search(query: str) -> str: """Search arxiv database for scientific research papers and studies. This is your primary online information source. always check it first when you search for additional information, before using any other online tool.""" global all_sources arxiv_retriever = ArxivRetriever(load_max_docs=3) data = arxiv_retriever.invoke(query) meta_data = [i.metadata for i in data] formatted_sources = format_arxiv_documents(data) all_sources += formatted_sources parsed_sources = parse_list_to_dicts(formatted_sources) add_many(parsed_sources) return data.__str__() @tool def get_arxiv_paper(paper_id:str) -> None: """Download a paper from axriv to download a paper please input the axriv id such as "1605.08386v1" This tool is named get_arxiv_paper If you input "http://arxiv.org/abs/2312.02813", This will break the code. Also only do "2312.02813". In addition please download one paper at a time. Pleaase keep the inputs/output free of additional information only have the id. """ # code from https://lukasschwab.me/arxiv.py/arxiv.html paper = next(arxiv.Client().results(arxiv.Search(id_list=[paper_id]))) number_without_period = paper_id.replace('.', '') # Download the PDF to a specified directory with a custom filename. paper.download_pdf(dirpath="./downloaded_papers", filename=f"{number_without_period}.pdf") @tool def embed_arvix_paper(paper_id:str) -> None: """Download a paper from axriv to download a paper please input the axriv id such as "1605.08386v1" This tool is named get_arxiv_paper If you input "http://arxiv.org/abs/2312.02813", This will break the code. Also only do "2312.02813". In addition please download one paper at a time. Pleaase keep the inputs/output free of additional information only have the id. """ # code from https://lukasschwab.me/arxiv.py/arxiv.html paper = next(arxiv.Client().results(arxiv.Search(id_list=[paper_id]))) number_without_period = paper_id.replace('.', '') pdf_file_name = f"{number_without_period}.pdf" pdf_directory = "./downloaded_papers" create_folder_if_not_exists(pdf_directory) # Download the PDF to a specified directory with a custom filename. paper.download_pdf(dirpath=pdf_directory, filename=f"{number_without_period}.pdf") client = chromadb.PersistentClient( path=persist_directory, ) collection_name="ArxivPapers" #store using envar embedding_function = SentenceTransformerEmbeddings( model_name="all-MiniLM-L6-v2", ) full_path = os.path.join(pdf_directory, pdf_file_name) add_pdf_to_vector_store( collection_name=collection_name, pdf_file_location=full_path, ) @tool def wikipedia_search(query: str) -> str: """Search Wikipedia for additional information to expand on research papers or when no papers can be found.""" global all_sources api_wrapper = WikipediaAPIWrapper() wikipedia_search = WikipediaQueryRun(api_wrapper=api_wrapper) wikipedia_results = wikipedia_search.run(query) formatted_summaries = format_wiki_summaries(wikipedia_results) all_sources += formatted_summaries parsed_summaries = parse_list_to_dicts(formatted_summaries) add_many(parsed_summaries) #all_sources += create_wikipedia_urls_from_text(wikipedia_results) return wikipedia_results @tool def google_search(query: str) -> str: """Search Google for additional results when you can't answer questions using arxiv search or wikipedia search.""" global all_sources websearch = GoogleSearchAPIWrapper() search_results:dict = websearch.results(query, 3) cleaner_sources =format_search_results(search_results) parsed_csources = parse_list_to_dicts(cleaner_sources) add_many(parsed_csources) all_sources += cleaner_sources return cleaner_sources.__str__()