from fastapi import FastAPI import gradio as gr from gradio.themes.base import Base from hf_mixtral_agent import agent_executor from innovation_pathfinder_ai.source_container.container import ( all_sources ) from innovation_pathfinder_ai.utils.utils import extract_urls from innovation_pathfinder_ai.utils import logger from innovation_pathfinder_ai.utils.utils import ( generate_uuid ) from langchain_community.vectorstores import Chroma import chromadb from configparser import ConfigParser import dotenv import os dotenv.load_dotenv() config = ConfigParser() config.read('innovation_pathfinder_ai/config.ini') persist_directory = config.get('main', 'VECTOR_DATABASE_LOCATION') logger = logger.get_console_logger("app") app = FastAPI() def initialize_chroma_db() -> Chroma: collection_name = config.get('main', 'CONVERSATION_COLLECTION_NAME') client = chromadb.PersistentClient( path=persist_directory ) collection = client.get_or_create_collection( name=collection_name, ) return collection if __name__ == "__main__": db = initialize_chroma_db() def add_text(history, text): history = history + [(text, None)] return history, "" def bot(history): response = infer(history[-1][0], history) sources = extract_urls(all_sources) src_list = '\n'.join(sources) current_id = generate_uuid() db.add( ids=[current_id], documents=[response['output']], metadatas=[ { "human_message":history[-1][0], "sources": src_list } ] ) if not sources: response_w_sources = response['output']+"\n\n\n Sources: \n\n\n Internal knowledge base" else: response_w_sources = response['output']+"\n\n\n Sources: \n\n\n"+src_list history[-1][1] = response_w_sources return history def infer(question, history): query = question result = agent_executor.invoke( { "input": question, "chat_history": history } ) return result def vote(data: gr.LikeData): if data.liked: print("You upvoted this response: " + data.value) else: print("You downvoted this response: " + data.value) css=""" #col-container {max-width: 700px; margin-left: auto; margin-right: auto;} """ title = """

Hello Human, I am your AI knowledge research assistant. I can explore topics across ArXiv, Wikipedia and use Google search.

""" with gr.Blocks(theme=gr.themes.Soft(), title="AlfredAI - AI Knowledge Research Assistant") as demo: # with gr.Tab("Google|Wikipedia|Arxiv"): with gr.Column(elem_id="col-container"): gr.HTML(title) with gr.Row(): question = gr.Textbox(label="Question", placeholder="Type your question and hit Enter",) chatbot = gr.Chatbot([], elem_id="AI Assistant", bubble_full_width=False, avatar_images=(None, (os.path.join(os.path.dirname(__file__), "innovation_pathfinder_ai/avatar.png"))),) chatbot.like(vote, None, None) clear = gr.Button("Clear") question.submit(add_text, [chatbot, question], [chatbot, question], queue=False).then( bot, chatbot, chatbot ) clear.click(lambda: None, None, chatbot, queue=False) with gr.Accordion("Open for More!", open=False): gr.Markdown("Nothing yet...") demo.queue() demo.launch(debug=True, favicon_path=os.path.join(os.path.dirname(__file__),"innovation_pathfinder_ai/favicon.ico"), share=True) x = 0 # for debugging purposes app = gr.mount_gradio_app(app, demo, path="/")