import spaces import json import subprocess from llama_cpp import Llama from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType from llama_cpp_agent.providers import LlamaCppPythonProvider from llama_cpp_agent.chat_history import BasicChatHistory from llama_cpp_agent.chat_history.messages import Roles import gradio as gr from huggingface_hub import hf_hub_download repoId = "SakuraLLM/Sakura-14B-Qwen2beta-v0.9.2-GGUF" filename = "sakura-14b-qwen2beta-v0.9.2-q4km.gguf" systemMessage="你是一个轻小说翻译模型,可以流畅通顺地使用给定的术语表以日本轻小说的风格将日文翻译成简体中文,并联系上下文正确使用人称代词,注意不要混淆使役态和被动态的主语和宾语,不要擅自添加原文中没有的代词,也不要擅自增加或减少换行。", user_message="" # 下載Sakura-14B模型 hf_hub_download( repo_id=repoId, filename=filename, local_dir="./models" ) llm = None llm_model = None @spaces.GPU(duration=120) def respond( message, history: list[tuple[str, str]], model=filename, system_message=systemMessage, max_tokens=4096, temperature=0.1, top_p=0.3, top_k=40, repeat_penalty=1.1, ): chat_template = MessagesFormatterType.GEMMA_2 global llm global llm_model if llm is None or llm_model != model: llm = Llama( model_path=f"models/{model}", flash_attn=True, n_gpu_layers=81, n_batch=1024, n_ctx=8192, ) llm_model = model provider = LlamaCppPythonProvider(llm) agent = LlamaCppAgent( provider, system_prompt=f"{system_message}", predefined_messages_formatter_type=chat_template, debug_output=True ) settings = provider.get_provider_default_settings() settings.temperature = temperature settings.top_k = top_k settings.top_p = top_p settings.max_tokens = max_tokens settings.repeat_penalty = repeat_penalty settings.stream = True messages = BasicChatHistory() for msn in history: user = { 'role': Roles.user, 'content': "根据以下术语表(可以为空):\n"+"将下面的日文文本根据上述术语表的对应关系和备注翻译成中文,并且列印出使用哪些术语表:"+msn[0] } assistant = { 'role': Roles.assistant, 'content': msn[1] } messages.add_message(user) messages.add_message(assistant) stream = agent.get_chat_response( message, llm_sampling_settings=settings, chat_history=messages, returns_streaming_generator=True, print_output=False ) outputs = "" for output in stream: outputs += output yield outputs description = """

Defaults to Sakura-14B-Qwen2beta

[Sakura-14B-Qwen2beta Model]

""" demo = gr.ChatInterface( respond, retry_btn="Retry", undo_btn="Undo", clear_btn="Clear", submit_btn="Send", title="Chat with Sakura 14B using llama.cpp", description=description, chatbot=gr.Chatbot( scale=1, likeable=False, show_copy_button=True ) ) if __name__ == "__main__": demo.launch()