convert / app.py
Narsil's picture
Narsil HF staff
Moving to gradio 4.4.1
cee67d6
raw
history blame
3.2 kB
import csv
from datetime import datetime
import os
from typing import Optional
import gradio as gr
from convert import convert
from huggingface_hub import HfApi, Repository
DATASET_REPO_URL = "https://huggingface.co/datasets/safetensors/conversions"
DATA_FILENAME = "data.csv"
DATA_FILE = os.path.join("data", DATA_FILENAME)
HF_TOKEN = os.environ.get("HF_TOKEN")
repo: Optional[Repository] = None
# TODO
if False and HF_TOKEN:
repo = Repository(local_dir="data", clone_from=DATASET_REPO_URL, token=HF_TOKEN)
def run(model_id: str, is_private: bool, token: Optional[str] = None) -> str:
if model_id == "":
return """
### Invalid input 🐞
Please fill a token and model_id.
"""
try:
if is_private:
api = HfApi(token=token)
else:
api = HfApi(token=HF_TOKEN)
hf_is_private = api.model_info(repo_id=model_id).private
if is_private and not hf_is_private:
# This model is NOT private
# Change the token so we make the PR on behalf of the bot.
api = HfApi(token=HF_TOKEN)
print("is_private", is_private)
commit_info, errors = convert(api=api, model_id=model_id)
print("[commit_info]", commit_info)
string = f"""
### Success πŸ”₯
Yay! This model was successfully converted and a PR was open using your token, here:
[{commit_info.pr_url}]({commit_info.pr_url})
"""
if errors:
string += "\nErrors during conversion:\n"
string += "\n".join(f"Error while converting {filename}: {e}, skipped conversion" for filename, e in errors)
return string
except Exception as e:
return f"""
### Error 😒😒😒
{e}
"""
DESCRIPTION = """
The steps are the following:
- Paste a read-access token from hf.co/settings/tokens. Read access is enough given that we will open a PR against the source repo.
- Input a model id from the Hub
- Click "Submit"
- That's it! You'll get feedback if it works or not, and if it worked, you'll get the URL of the opened PR πŸ”₯
⚠️ For now only `pytorch_model.bin` files are supported but we'll extend in the future.
"""
title="Convert any model to Safetensors and open a PR"
allow_flagging="never"
def token_text(visible=False):
return gr.Text(max_lines=1, label="your_hf_token", visible=visible)
with gr.Blocks(title=title) as demo:
description = gr.Markdown(f"""# {title}""")
description = gr.Markdown(DESCRIPTION)
with gr.Row() as r:
with gr.Column() as c:
model_id = gr.Text(max_lines=1, label="model_id")
is_private = gr.Checkbox(label="Private model")
token = token_text()
with gr.Row() as c:
clean = gr.ClearButton()
submit = gr.Button("Submit", variant="primary")
with gr.Column() as d:
output = gr.Markdown()
is_private.change(lambda s: token_text(s), inputs=is_private, outputs=token)
submit.click(run, inputs=[model_id, is_private, token], outputs=output, concurrency_limit=1)
demo.queue(max_size=10).launch(show_api=True)