Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,199 +1,513 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
-
|
4 |
from duckduckgo_search import DDGS
|
|
|
|
|
5 |
from datetime import datetime
|
6 |
-
import
|
|
|
|
|
|
|
7 |
|
8 |
-
#
|
9 |
-
|
|
|
|
|
|
|
10 |
|
11 |
-
#
|
12 |
-
def get_web_results(query: str, max_results: int = 3) -> list:
|
13 |
-
"""Fetch web results synchronously for Zero GPU compatibility."""
|
14 |
try:
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
20 |
|
|
|
|
|
|
|
21 |
|
22 |
-
#
|
23 |
-
def format_prompt(query: str, web_results: list) -> str:
|
24 |
-
"""Create a concise prompt with web context, explicitly instructing citation."""
|
25 |
-
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
26 |
-
context = ""
|
27 |
-
for i, r in enumerate(web_results, 1): # Start index at 1 for citations
|
28 |
-
context += f"- [{i}] {r['title']}: {r['snippet']}\n"
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
""
|
|
|
|
|
|
|
|
|
37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
|
|
44 |
|
45 |
-
|
46 |
-
|
47 |
|
48 |
-
|
49 |
-
|
50 |
-
|
|
|
|
|
|
|
51 |
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
-
|
56 |
-
|
57 |
-
"""Create an HTML list of sources with anchors."""
|
58 |
if not web_results:
|
59 |
-
return "<div>No sources available</div>"
|
60 |
-
|
|
|
61 |
for i, res in enumerate(web_results, 1):
|
|
|
|
|
62 |
sources_html += f"""
|
63 |
-
<div class='source-item'
|
64 |
-
<
|
65 |
-
<
|
|
|
|
|
|
|
|
|
66 |
</div>
|
67 |
"""
|
68 |
sources_html += "</div>"
|
69 |
return sources_html
|
70 |
|
71 |
-
|
72 |
-
def
|
73 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
-
|
76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
-
|
79 |
-
|
80 |
-
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
-
|
85 |
-
|
|
|
86 |
|
87 |
-
|
88 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
|
|
|
|
|
|
|
|
90 |
|
91 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
css = """
|
93 |
-
body {
|
94 |
-
font-family: 'Arial', sans-serif;
|
95 |
-
background: #1a1a1a;
|
96 |
-
color: #ffffff;
|
97 |
-
}
|
98 |
.gradio-container {
|
99 |
-
max-width:
|
100 |
-
|
101 |
-
padding: 15px;
|
102 |
}
|
103 |
-
|
104 |
text-align: center;
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
}
|
110 |
-
.header h1 { font-size: 2em; margin: 0; color: #ffffff; }
|
111 |
-
.header p { color: #bdc3c7; font-size: 1em; }
|
112 |
.search-box {
|
113 |
-
|
114 |
-
|
115 |
border-radius: 8px;
|
116 |
-
|
117 |
}
|
118 |
-
.search-box input {
|
119 |
-
background: #
|
120 |
-
|
121 |
-
|
122 |
-
border-radius:
|
|
|
|
|
|
|
123 |
}
|
124 |
.search-box button {
|
125 |
-
background: #
|
126 |
border: none !important;
|
127 |
-
border-radius: 5px !important;
|
128 |
}
|
129 |
.results-container {
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
}
|
135 |
.answer-box {
|
136 |
-
|
137 |
-
background: #2c2c2c;
|
138 |
-
padding: 15px;
|
139 |
border-radius: 8px;
|
140 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
}
|
142 |
-
.
|
143 |
-
|
144 |
-
|
145 |
-
background: #2c2c2c;
|
146 |
-
padding: 10px;
|
147 |
border-radius: 8px;
|
148 |
-
|
149 |
-
}
|
150 |
-
.source-item {
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
margin-top: 15px;
|
156 |
-
background: #2c2c2c;
|
157 |
-
padding: 10px;
|
158 |
border-radius: 8px;
|
159 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
}
|
161 |
-
|
162 |
"""
|
163 |
|
164 |
-
#
|
165 |
-
with gr.Blocks(title="
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
gr.Markdown("
|
170 |
-
|
171 |
-
|
172 |
-
with gr.
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
|
|
|
185 |
search_btn.click(
|
186 |
-
fn=
|
187 |
-
inputs=[search_input,
|
188 |
-
outputs=[
|
189 |
)
|
|
|
|
|
190 |
search_input.submit(
|
191 |
-
fn=
|
192 |
-
inputs=[search_input,
|
193 |
-
outputs=[
|
194 |
)
|
195 |
|
196 |
-
|
197 |
-
# Launch the app
|
198 |
if __name__ == "__main__":
|
199 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
import spaces
|
4 |
from duckduckgo_search import DDGS
|
5 |
+
import time
|
6 |
+
import torch
|
7 |
from datetime import datetime
|
8 |
+
import os
|
9 |
+
import subprocess
|
10 |
+
import numpy as np
|
11 |
+
from typing import List, Dict, Tuple, Any
|
12 |
|
13 |
+
# Install required dependencies for Kokoro with better error handling
|
14 |
+
try:
|
15 |
+
subprocess.run(['git', 'lfs', 'install'], check=True)
|
16 |
+
if not os.path.exists('Kokoro-82M'):
|
17 |
+
subprocess.run(['git', 'clone', 'https://huggingface.co/hexgrad/Kokoro-82M'], check=True)
|
18 |
|
19 |
+
# Try installing espeak with proper package manager commands
|
|
|
|
|
20 |
try:
|
21 |
+
subprocess.run(['apt-get', 'update'], check=True)
|
22 |
+
subprocess.run(['apt-get', 'install', '-y', 'espeak'], check=True)
|
23 |
+
except subprocess.CalledProcessError:
|
24 |
+
print("Warning: Could not install espeak. Attempting espeak-ng...")
|
25 |
+
try:
|
26 |
+
subprocess.run(['apt-get', 'install', '-y', 'espeak-ng'], check=True)
|
27 |
+
except subprocess.CalledProcessError:
|
28 |
+
print("Warning: Could not install espeak or espeak-ng. TTS functionality may be limited.")
|
29 |
|
30 |
+
except Exception as e:
|
31 |
+
print(f"Warning: Initial setup error: {str(e)}")
|
32 |
+
print("Continuing with limited functionality...")
|
33 |
|
34 |
+
# --- Initialization (Do this ONCE) ---
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
+
model_name = "deepseek-ai/DeepSeek-R1-Distill-Llama-8B"
|
37 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
38 |
+
tokenizer.pad_token = tokenizer.eos_token
|
39 |
+
# Initialize DeepSeek model
|
40 |
+
model = AutoModelForCausalLM.from_pretrained(
|
41 |
+
model_name,
|
42 |
+
device_map="auto",
|
43 |
+
offload_folder="offload",
|
44 |
+
low_cpu_mem_usage=True,
|
45 |
+
torch_dtype=torch.float16
|
46 |
+
)
|
47 |
|
48 |
+
# Initialize Kokoro TTS (with error handling)
|
49 |
+
VOICE_CHOICES = {
|
50 |
+
'🇺🇸 Female (Default)': 'af',
|
51 |
+
'🇺🇸 Bella': 'af_bella',
|
52 |
+
'🇺🇸 Sarah': 'af_sarah',
|
53 |
+
'🇺🇸 Nicole': 'af_nicole'
|
54 |
+
}
|
55 |
+
TTS_ENABLED = False
|
56 |
+
TTS_MODEL = None
|
57 |
+
VOICEPACK = None
|
58 |
|
59 |
+
try:
|
60 |
+
if os.path.exists('Kokoro-82M'):
|
61 |
+
import sys
|
62 |
+
sys.path.append('Kokoro-82M')
|
63 |
+
from models import build_model # type: ignore
|
64 |
+
from kokoro import generate # type: ignore
|
65 |
|
66 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
67 |
+
TTS_MODEL = build_model('Kokoro-82M/kokoro-v0_19.pth', device)
|
68 |
|
69 |
+
# Load default voice
|
70 |
+
try:
|
71 |
+
VOICEPACK = torch.load('Kokoro-82M/voices/af.pt', map_location=device, weights_only=True)
|
72 |
+
except Exception as e:
|
73 |
+
print(f"Warning: Could not load default voice: {e}")
|
74 |
+
raise
|
75 |
|
76 |
+
TTS_ENABLED = True
|
77 |
+
else:
|
78 |
+
print("Warning: Kokoro-82M directory not found. TTS disabled.")
|
79 |
+
except Exception as e:
|
80 |
+
print(f"Warning: Could not initialize Kokoro TTS: {str(e)}")
|
81 |
+
TTS_ENABLED = False
|
82 |
|
83 |
+
def get_web_results(query: str, max_results: int = 5) -> List[Dict[str, str]]:
|
84 |
+
"""Get web search results using DuckDuckGo"""
|
85 |
+
try:
|
86 |
+
with DDGS() as ddgs:
|
87 |
+
results = list(ddgs.text(query, max_results=max_results))
|
88 |
+
return [{
|
89 |
+
"title": result.get("title", ""),
|
90 |
+
"snippet": result["body"],
|
91 |
+
"url": result["href"],
|
92 |
+
"date": result.get("published", "")
|
93 |
+
} for result in results]
|
94 |
+
except Exception as e:
|
95 |
+
print(f"Error in web search: {e}")
|
96 |
+
return []
|
97 |
+
|
98 |
+
def format_prompt(query: str, context: List[Dict[str, str]]) -> str:
|
99 |
+
"""Format the prompt with web context"""
|
100 |
+
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
101 |
+
context_lines = '\n'.join([f'- [{res["title"]}]: {res["snippet"]}' for res in context])
|
102 |
+
return f"""You are an intelligent search assistant. Answer the user's query using the provided web context.
|
103 |
+
Current Time: {current_time}
|
104 |
+
Important: For election-related queries, please distinguish clearly between different election years and types (presidential vs. non-presidential). Only use information from the provided web context.
|
105 |
+
Query: {query}
|
106 |
+
Web Context:
|
107 |
+
{context_lines}
|
108 |
+
Provide a detailed answer in markdown format. Include relevant information from sources and cite them using [1], [2], etc. If the query is about elections, clearly specify which year and type of election you're discussing.
|
109 |
+
Answer:"""
|
110 |
|
111 |
+
def format_sources(web_results: List[Dict[str, str]]) -> str:
|
112 |
+
"""Format sources with more details"""
|
|
|
113 |
if not web_results:
|
114 |
+
return "<div class='no-sources'>No sources available</div>"
|
115 |
+
|
116 |
+
sources_html = "<div class='sources-container'>"
|
117 |
for i, res in enumerate(web_results, 1):
|
118 |
+
title = res["title"] or "Source"
|
119 |
+
date = f"<span class='source-date'>{res['date']}</span>" if res['date'] else ""
|
120 |
sources_html += f"""
|
121 |
+
<div class='source-item'>
|
122 |
+
<div class='source-number'>[{i}]</div>
|
123 |
+
<div class='source-content'>
|
124 |
+
<a href="{res['url']}" target="_blank" class='source-title'>{title}</a>
|
125 |
+
{date}
|
126 |
+
<div class='source-snippet'>{res['snippet'][:150]}...</div>
|
127 |
+
</div>
|
128 |
</div>
|
129 |
"""
|
130 |
sources_html += "</div>"
|
131 |
return sources_html
|
132 |
|
133 |
+
@spaces.GPU(duration=30)
|
134 |
+
def generate_answer(prompt: str) -> str:
|
135 |
+
"""Generate answer using the DeepSeek model"""
|
136 |
+
inputs = tokenizer(
|
137 |
+
prompt,
|
138 |
+
return_tensors="pt",
|
139 |
+
padding=True,
|
140 |
+
truncation=True,
|
141 |
+
max_length=512,
|
142 |
+
return_attention_mask=True
|
143 |
+
).to(model.device)
|
144 |
+
|
145 |
+
outputs = model.generate(
|
146 |
+
inputs.input_ids,
|
147 |
+
attention_mask=inputs.attention_mask,
|
148 |
+
max_new_tokens=256,
|
149 |
+
temperature=0.7,
|
150 |
+
top_p=0.95,
|
151 |
+
pad_token_id=tokenizer.eos_token_id,
|
152 |
+
do_sample=True,
|
153 |
+
early_stopping=True
|
154 |
+
)
|
155 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
156 |
+
|
157 |
+
@spaces.GPU(duration=30)
|
158 |
+
def generate_speech_with_gpu(text: str, voice_name: str = 'af', tts_model=TTS_MODEL, voicepack=VOICEPACK) -> Tuple[int, np.ndarray] | None:
|
159 |
+
"""Generate speech from text using Kokoro TTS model."""
|
160 |
+
if not TTS_ENABLED or tts_model is None:
|
161 |
+
print("TTS is not enabled or model is not loaded.")
|
162 |
+
return None
|
163 |
+
|
164 |
+
try:
|
165 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
166 |
+
|
167 |
+
# Handle voicepack loading
|
168 |
+
voice_file = f'Kokoro-82M/voices/{voice_name}.pt'
|
169 |
+
if voice_name == 'af' and voicepack is not None:
|
170 |
+
# Use the pre-loaded default voicepack
|
171 |
+
pass
|
172 |
+
elif os.path.exists(voice_file):
|
173 |
+
# Load the selected voicepack if it exists
|
174 |
+
voicepack = torch.load(voice_file, map_location=device, weights_only=True)
|
175 |
+
else:
|
176 |
+
# Fall back to default 'af' if selected voicepack is missing
|
177 |
+
print(f"Voicepack {voice_name}.pt not found. Falling back to default 'af'.")
|
178 |
+
voice_file = 'Kokoro-82M/voices/af.pt'
|
179 |
+
if os.path.exists(voice_file):
|
180 |
+
voicepack = torch.load(voice_file, map_location=device, weights_only=True)
|
181 |
+
else:
|
182 |
+
print("Default voicepack 'af.pt' not found. Cannot generate audio.")
|
183 |
+
return None
|
184 |
+
|
185 |
+
# Clean the text
|
186 |
+
clean_text = ' '.join([line for line in text.split('\n') if not line.startswith('#')])
|
187 |
+
clean_text = clean_text.replace('[', '').replace(']', '').replace('*', '')
|
188 |
|
189 |
+
# Split long text into chunks
|
190 |
+
max_chars = 1000
|
191 |
+
chunks = []
|
192 |
+
if len(clean_text) > max_chars:
|
193 |
+
sentences = clean_text.split('.')
|
194 |
+
current_chunk = ""
|
195 |
+
for sentence in sentences:
|
196 |
+
if len(current_chunk) + len(sentence) + 1 < max_chars:
|
197 |
+
current_chunk += sentence + "."
|
198 |
+
else:
|
199 |
+
chunks.append(current_chunk.strip())
|
200 |
+
current_chunk = sentence + "."
|
201 |
+
if current_chunk:
|
202 |
+
chunks.append(current_chunk.strip())
|
203 |
+
else:
|
204 |
+
chunks = [clean_text]
|
205 |
|
206 |
+
# Generate audio for each chunk
|
207 |
+
audio_chunks = []
|
208 |
+
for chunk in chunks:
|
209 |
+
if chunk.strip():
|
210 |
+
chunk_audio, _ = generate(tts_model, chunk, voicepack, lang='a')
|
211 |
+
if isinstance(chunk_audio, torch.Tensor):
|
212 |
+
chunk_audio = chunk_audio.cpu().numpy()
|
213 |
+
audio_chunks.append(chunk_audio)
|
214 |
|
215 |
+
# Concatenate chunks
|
216 |
+
if audio_chunks:
|
217 |
+
final_audio = np.concatenate(audio_chunks) if len(audio_chunks) > 1 else audio_chunks[0]
|
218 |
+
return (24000, final_audio)
|
219 |
+
else:
|
220 |
+
return None
|
221 |
+
|
222 |
+
except Exception as e:
|
223 |
+
print(f"Error generating speech: {str(e)}")
|
224 |
+
return None
|
225 |
+
|
226 |
+
def process_query(query: str, history: List[List[str]], selected_voice: str = 'af'):
|
227 |
+
"""Process user query with streaming effect"""
|
228 |
+
try:
|
229 |
+
if history is None:
|
230 |
+
history = []
|
231 |
|
232 |
+
# Get web results first
|
233 |
+
web_results = get_web_results(query)
|
234 |
+
sources_html = format_sources(web_results)
|
235 |
|
236 |
+
current_history = history + [[query, "*Searching...*"]]
|
237 |
|
238 |
+
# Yield initial searching state
|
239 |
+
yield (
|
240 |
+
"*Searching & Thinking...*", # answer_output (Markdown)
|
241 |
+
sources_html, # sources_output (HTML)
|
242 |
+
"Searching...", # search_btn (Button)
|
243 |
+
current_history, # chat_history_display (Chatbot)
|
244 |
+
None # audio_output (Audio)
|
245 |
+
)
|
246 |
|
247 |
+
# Generate answer
|
248 |
+
prompt = format_prompt(query, web_results)
|
249 |
+
answer = generate_answer(prompt)
|
250 |
+
final_answer = answer.split("Answer:")[-1].strip()
|
251 |
|
252 |
+
# Update history before TTS
|
253 |
+
updated_history = history + [[query, final_answer]]
|
254 |
+
|
255 |
+
# Generate speech from the answer (only if enabled)
|
256 |
+
if TTS_ENABLED:
|
257 |
+
yield (
|
258 |
+
final_answer, # answer_output
|
259 |
+
sources_html, # sources_output
|
260 |
+
"Generating audio...", # search_btn
|
261 |
+
updated_history, # chat_history_display
|
262 |
+
None # audio_output
|
263 |
+
)
|
264 |
+
try:
|
265 |
+
audio = generate_speech_with_gpu(final_answer, selected_voice)
|
266 |
+
if audio is None:
|
267 |
+
final_answer += "\n\n*Audio generation failed. The voicepack may be missing or incompatible.*"
|
268 |
+
except Exception as e:
|
269 |
+
final_answer += f"\n\n*Error generating audio: {str(e)}*"
|
270 |
+
audio = None
|
271 |
+
else:
|
272 |
+
final_answer += "\n\n*TTS is disabled. Audio not available.*"
|
273 |
+
audio = None
|
274 |
+
|
275 |
+
# Yield final result
|
276 |
+
yield (
|
277 |
+
final_answer, # answer_output
|
278 |
+
sources_html, # sources_output
|
279 |
+
"Search", # search_btn
|
280 |
+
updated_history, # chat_history_display
|
281 |
+
audio if audio is not None else None # audio_output
|
282 |
+
)
|
283 |
+
|
284 |
+
except Exception as e:
|
285 |
+
error_message = str(e)
|
286 |
+
if "GPU quota" in error_message:
|
287 |
+
error_message = "⚠️ GPU quota exceeded. Please try again later when the daily quota resets."
|
288 |
+
yield (
|
289 |
+
f"Error: {error_message}", # answer_output
|
290 |
+
sources_html, # sources_output
|
291 |
+
"Search", # search_btn
|
292 |
+
history + [[query, f"*Error: {error_message}*"]], # chat_history_display
|
293 |
+
None # audio_output
|
294 |
+
)
|
295 |
+
|
296 |
+
# Update the CSS for better contrast and readability
|
297 |
css = """
|
|
|
|
|
|
|
|
|
|
|
298 |
.gradio-container {
|
299 |
+
max-width: 1200px !important;
|
300 |
+
background-color: #f7f7f8 !important;
|
|
|
301 |
}
|
302 |
+
#header {
|
303 |
text-align: center;
|
304 |
+
margin-bottom: 2rem;
|
305 |
+
padding: 2rem 0;
|
306 |
+
background: #1a1b1e;
|
307 |
+
border-radius: 12px;
|
308 |
+
color: white;
|
309 |
+
}
|
310 |
+
#header h1 {
|
311 |
+
color: white;
|
312 |
+
font-size: 2.5rem;
|
313 |
+
margin-bottom: 0.5rem;
|
314 |
+
}
|
315 |
+
#header h3 {
|
316 |
+
color: #a8a9ab;
|
317 |
+
}
|
318 |
+
.search-container {
|
319 |
+
background: #1a1b1e;
|
320 |
+
border-radius: 12px;
|
321 |
+
box-shadow: 0 4px 12px rgba(0,0,0,0.1);
|
322 |
+
padding: 1rem;
|
323 |
+
margin-bottom: 1rem;
|
324 |
}
|
|
|
|
|
325 |
.search-box {
|
326 |
+
padding: 1rem;
|
327 |
+
background: #2c2d30;
|
328 |
border-radius: 8px;
|
329 |
+
margin-bottom: 1rem;
|
330 |
}
|
331 |
+
.search-box input[type="text"] {
|
332 |
+
background: #3a3b3e !important;
|
333 |
+
border: 1px solid #4a4b4e !important;
|
334 |
+
color: white !important;
|
335 |
+
border-radius: 8px !important;
|
336 |
+
}
|
337 |
+
.search-box input[type="text"]::placeholder {
|
338 |
+
color: #a8a9ab !important;
|
339 |
}
|
340 |
.search-box button {
|
341 |
+
background: #2563eb !important;
|
342 |
border: none !important;
|
|
|
343 |
}
|
344 |
.results-container {
|
345 |
+
background: #2c2d30;
|
346 |
+
border-radius: 8px;
|
347 |
+
padding: 1rem;
|
348 |
+
margin-top: 1rem;
|
349 |
}
|
350 |
.answer-box {
|
351 |
+
background: #3a3b3e;
|
|
|
|
|
352 |
border-radius: 8px;
|
353 |
+
padding: 1.5rem;
|
354 |
+
color: white;
|
355 |
+
margin-bottom: 1rem;
|
356 |
+
}
|
357 |
+
.answer-box p {
|
358 |
+
color: #e5e7eb;
|
359 |
+
line-height: 1.6;
|
360 |
}
|
361 |
+
.sources-container {
|
362 |
+
margin-top: 1rem;
|
363 |
+
background: #2c2d30;
|
|
|
|
|
364 |
border-radius: 8px;
|
365 |
+
padding: 1rem;
|
366 |
+
}
|
367 |
+
.source-item {
|
368 |
+
display: flex;
|
369 |
+
padding: 12px;
|
370 |
+
margin: 8px 0;
|
371 |
+
background: #3a3b3e;
|
|
|
|
|
|
|
372 |
border-radius: 8px;
|
373 |
+
transition: all 0.2s;
|
374 |
+
}
|
375 |
+
.source-item:hover {
|
376 |
+
background: #4a4b4e;
|
377 |
+
}
|
378 |
+
.source-number {
|
379 |
+
font-weight: bold;
|
380 |
+
margin-right: 12px;
|
381 |
+
color: #60a5fa;
|
382 |
+
}
|
383 |
+
.source-content {
|
384 |
+
flex: 1;
|
385 |
+
}
|
386 |
+
.source-title {
|
387 |
+
color: #60a5fa;
|
388 |
+
font-weight: 500;
|
389 |
+
text-decoration: none;
|
390 |
+
display: block;
|
391 |
+
margin-bottom: 4px;
|
392 |
+
}
|
393 |
+
.source-date {
|
394 |
+
color: #a8a9ab;
|
395 |
+
font-size: 0.9em;
|
396 |
+
margin-left: 8px;
|
397 |
+
}
|
398 |
+
.source-snippet {
|
399 |
+
color: #e5e7eb;
|
400 |
+
font-size: 0.9em;
|
401 |
+
line-height: 1.4;
|
402 |
+
}
|
403 |
+
.chat-history {
|
404 |
+
max-height: 400px;
|
405 |
+
overflow-y: auto;
|
406 |
+
padding: 1rem;
|
407 |
+
background: #2c2d30;
|
408 |
+
border-radius: 8px;
|
409 |
+
margin-top: 1rem;
|
410 |
+
}
|
411 |
+
.examples-container {
|
412 |
+
background: #2c2d30;
|
413 |
+
border-radius: 8px;
|
414 |
+
padding: 1rem;
|
415 |
+
margin-top: 1rem;
|
416 |
+
}
|
417 |
+
.examples-container button {
|
418 |
+
background: #3a3b3e !important;
|
419 |
+
border: 1px solid #4a4b4e !important;
|
420 |
+
color: #e5e7eb !important;
|
421 |
+
}
|
422 |
+
.markdown-content {
|
423 |
+
color: #e5e7eb !important;
|
424 |
+
}
|
425 |
+
.markdown-content h1, .markdown-content h2, .markdown-content h3 {
|
426 |
+
color: white !important;
|
427 |
+
}
|
428 |
+
.markdown-content a {
|
429 |
+
color: #60a5fa !important;
|
430 |
+
}
|
431 |
+
.accordion {
|
432 |
+
background: #2c2d30 !important;
|
433 |
+
border-radius: 8px !important;
|
434 |
+
margin-top: 1rem !important;
|
435 |
+
}
|
436 |
+
.voice-selector {
|
437 |
+
margin-top: 1rem;
|
438 |
+
background: #2c2d30;
|
439 |
+
border-radius: 8px;
|
440 |
+
padding: 0.5rem;
|
441 |
+
}
|
442 |
+
.voice-selector select {
|
443 |
+
background: #3a3b3e !important;
|
444 |
+
color: white !important;
|
445 |
+
border: 1px solid #4a4b4e !important;
|
446 |
}
|
|
|
447 |
"""
|
448 |
|
449 |
+
# Update the Gradio interface layout
|
450 |
+
with gr.Blocks(title="AI Search Assistant", css=css, theme="dark") as demo:
|
451 |
+
chat_history = gr.State([])
|
452 |
+
|
453 |
+
with gr.Column(elem_id="header"):
|
454 |
+
gr.Markdown("# 🔍 AI Search Assistant")
|
455 |
+
gr.Markdown("### Powered by DeepSeek & Real-time Web Results with Voice")
|
456 |
+
|
457 |
+
with gr.Column(elem_classes="search-container"):
|
458 |
+
with gr.Row(elem_classes="search-box"):
|
459 |
+
search_input = gr.Textbox(
|
460 |
+
label="",
|
461 |
+
placeholder="Ask anything...",
|
462 |
+
scale=5,
|
463 |
+
container=False
|
464 |
+
)
|
465 |
+
search_btn = gr.Button("Search", variant="primary", scale=1)
|
466 |
+
voice_select = gr.Dropdown(
|
467 |
+
choices=list(VOICE_CHOICES.items()),
|
468 |
+
value='af',
|
469 |
+
label="Select Voice",
|
470 |
+
elem_classes="voice-selector"
|
471 |
+
)
|
472 |
+
|
473 |
+
with gr.Row(elem_classes="results-container"):
|
474 |
+
with gr.Column(scale=2):
|
475 |
+
with gr.Column(elem_classes="answer-box"):
|
476 |
+
answer_output = gr.Markdown(elem_classes="markdown-content")
|
477 |
+
with gr.Row():
|
478 |
+
audio_output = gr.Audio(label="Voice Response", elem_classes="audio-player")
|
479 |
+
with gr.Accordion("Chat History", open=False, elem_classes="accordion"):
|
480 |
+
chat_history_display = gr.Chatbot(elem_classes="chat-history")
|
481 |
+
with gr.Column(scale=1):
|
482 |
+
with gr.Column(elem_classes="sources-box"):
|
483 |
+
gr.Markdown("### Sources")
|
484 |
+
sources_output = gr.HTML()
|
485 |
+
|
486 |
+
with gr.Row(elem_classes="examples-container"):
|
487 |
+
gr.Examples(
|
488 |
+
examples=[
|
489 |
+
"musk explores blockchain for doge",
|
490 |
+
"nvidia to launch new gaming card",
|
491 |
+
"What are the best practices for sustainable living?",
|
492 |
+
"tesla mistaken for asteroid"
|
493 |
+
],
|
494 |
+
inputs=search_input,
|
495 |
+
label="Try these examples"
|
496 |
+
)
|
497 |
|
498 |
+
# Handle interactions
|
499 |
search_btn.click(
|
500 |
+
fn=process_query,
|
501 |
+
inputs=[search_input, chat_history, voice_select],
|
502 |
+
outputs=[answer_output, sources_output, search_btn, chat_history_display, audio_output]
|
503 |
)
|
504 |
+
|
505 |
+
# Also trigger search on Enter key
|
506 |
search_input.submit(
|
507 |
+
fn=process_query,
|
508 |
+
inputs=[search_input, chat_history, voice_select],
|
509 |
+
outputs=[answer_output, sources_output, search_btn, chat_history_display, audio_output]
|
510 |
)
|
511 |
|
|
|
|
|
512 |
if __name__ == "__main__":
|
513 |
+
demo.launch(share=True)
|