Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
from PIL import Image | |
import cv2 | |
import numpy as np | |
from transformers import CLIPProcessor, CLIPModel | |
from ultralytics import FastSAM | |
from ultralytics.models.fastsam import FastSAMPrompt | |
# Load CLIP model | |
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32") | |
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32") | |
# Load FastSAM model | |
fast_sam = FastSAM('FastSAM-x.pt') | |
def process_image_clip(image, text_input): | |
# Process image for CLIP | |
inputs = processor( | |
images=image, | |
text=[text_input], | |
return_tensors="pt", | |
padding=True | |
) | |
# Get model predictions | |
outputs = model(**inputs) | |
logits_per_image = outputs.logits_per_image | |
probs = logits_per_image.softmax(dim=1) | |
confidence = float(probs[0][0]) | |
return f"Confidence that the image contains '{text_input}': {confidence:.2%}" | |
def process_image_fastsam(image): | |
# Convert PIL image to numpy array | |
image_np = np.array(image) | |
# Run FastSAM inference | |
everything_results = fast_sam(image_np, device='cpu', retina_masks=True, imgsz=1024, conf=0.4, iou=0.9) | |
prompt_process = FastSAMPrompt(image_np, everything_results, device='cpu') | |
# Get everything mask | |
ann = prompt_process.everything() | |
# Convert annotation to image | |
result_image = prompt_process.plot_to_result() | |
return Image.fromarray(result_image) | |
# Create Gradio interface | |
with gr.Blocks() as demo: | |
gr.Markdown("# CLIP and FastSAM Demo") | |
with gr.Tab("CLIP Zero-Shot Classification"): | |
with gr.Row(): | |
image_input = gr.Image(type="pil", label="Input Image") | |
text_input = gr.Textbox(label="What do you want to check in the image?", placeholder="Type here...") | |
output_text = gr.Textbox(label="Result") | |
classify_btn = gr.Button("Classify") | |
classify_btn.click(fn=process_image_clip, inputs=[image_input, text_input], outputs=output_text) | |
with gr.Tab("FastSAM Segmentation"): | |
with gr.Row(): | |
image_input_sam = gr.Image(type="pil", label="Input Image") | |
image_output = gr.Image(type="pil", label="Segmentation Result") | |
segment_btn = gr.Button("Segment") | |
segment_btn.click(fn=process_image_fastsam, inputs=[image_input_sam], outputs=image_output) | |
if __name__ == "__main__": | |
demo.launch() | |