sagar007 commited on
Commit
e31b682
Β·
verified Β·
1 Parent(s): a9b3c70

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -5
app.py CHANGED
@@ -17,7 +17,7 @@ CLIP_MODEL_NAME = "openai/clip-vit-base-patch32"
17
 
18
  # FastSAM
19
  # *Corrected* HuggingFace link for the weights
20
- FASTSAM_WEIGHTS_URL = "https://github.com/An-619/FastSAM/releases/download/v1.0/FastSAM-s.pt"
21
  FASTSAM_WEIGHTS_NAME = "FastSAM-s.pt"
22
 
23
  # Default FastSAM parameters
@@ -120,7 +120,7 @@ def process_image_fastsam(image, imgsz, conf, iou, retina_masks):
120
  # Check if results are valid
121
  if results is None or len(results) == 0 or results[0] is None:
122
  return None, "FastSAM did not return valid results. Try adjusting parameters or using a different image."
123
-
124
  # Get detections
125
  detections = sv.Detections.from_ultralytics(results[0])
126
  # Check if detections are valid
@@ -155,7 +155,6 @@ with gr.Blocks(css="footer {visibility: hidden}") as demo:
155
  This demo combines two powerful AI models:
156
  - **CLIP**: For zero-shot image classification
157
  - **FastSAM**: For automatic image segmentation
158
-
159
  Try uploading an image and use either of the tabs below!
160
  """)
161
 
@@ -187,7 +186,7 @@ with gr.Blocks(css="footer {visibility: hidden}") as demo:
187
  conf_slider = gr.Slider(minimum=0.0, maximum=1.0, step=0.05, value=DEFAULT_CONFIDENCE, label="Confidence Threshold")
188
  iou_slider = gr.Slider(minimum=0.0, maximum=1.0, step=0.05, value=DEFAULT_IOU, label="IoU Threshold")
189
  retina_checkbox = gr.Checkbox(label="Retina Masks", value=DEFAULT_RETINA_MASKS)
190
-
191
  with gr.Row():
192
  image_output = gr.Image(label="Segmentation Result")
193
  error_output = gr.Textbox(label="Error Message", type="text") # Added for displaying errors
@@ -212,7 +211,6 @@ with gr.Blocks(css="footer {visibility: hidden}") as demo:
212
  ### How to use:
213
  1. **CLIP Classification**: Upload an image and enter text to check if that concept exists in the image
214
  2. **FastSAM Segmentation**: Upload an image to get automatic segmentation with bounding boxes and masks
215
-
216
  ### Note:
217
  - The models run on CPU by default, so processing might take a few seconds. If you have a GPU, it will be used automatically.
218
  - For best results, use clear images with good lighting.
 
17
 
18
  # FastSAM
19
  # *Corrected* HuggingFace link for the weights
20
+ FASTSAM_WEIGHTS_URL = "https://huggingface.co/spaces/An-619/FastSAM/resolve/6f76f474c656d2cb29599f49c296a8784b02d04b/weights/FastSAM-s.pt"
21
  FASTSAM_WEIGHTS_NAME = "FastSAM-s.pt"
22
 
23
  # Default FastSAM parameters
 
120
  # Check if results are valid
121
  if results is None or len(results) == 0 or results[0] is None:
122
  return None, "FastSAM did not return valid results. Try adjusting parameters or using a different image."
123
+
124
  # Get detections
125
  detections = sv.Detections.from_ultralytics(results[0])
126
  # Check if detections are valid
 
155
  This demo combines two powerful AI models:
156
  - **CLIP**: For zero-shot image classification
157
  - **FastSAM**: For automatic image segmentation
 
158
  Try uploading an image and use either of the tabs below!
159
  """)
160
 
 
186
  conf_slider = gr.Slider(minimum=0.0, maximum=1.0, step=0.05, value=DEFAULT_CONFIDENCE, label="Confidence Threshold")
187
  iou_slider = gr.Slider(minimum=0.0, maximum=1.0, step=0.05, value=DEFAULT_IOU, label="IoU Threshold")
188
  retina_checkbox = gr.Checkbox(label="Retina Masks", value=DEFAULT_RETINA_MASKS)
189
+
190
  with gr.Row():
191
  image_output = gr.Image(label="Segmentation Result")
192
  error_output = gr.Textbox(label="Error Message", type="text") # Added for displaying errors
 
211
  ### How to use:
212
  1. **CLIP Classification**: Upload an image and enter text to check if that concept exists in the image
213
  2. **FastSAM Segmentation**: Upload an image to get automatic segmentation with bounding boxes and masks
 
214
  ### Note:
215
  - The models run on CPU by default, so processing might take a few seconds. If you have a GPU, it will be used automatically.
216
  - For best results, use clear images with good lighting.