import gradio as gr import torch from PIL import Image import cv2 import numpy as np from transformers import CLIPProcessor, CLIPModel from ultralytics import FastSAM from ultralytics.models.fastsam import FastSAMPrompt # Load CLIP model model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32") processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32") # Load FastSAM model fast_sam = FastSAM('FastSAM-x.pt') def process_image_clip(image, text_input): # Process image for CLIP inputs = processor( images=image, text=[text_input], return_tensors="pt", padding=True ) # Get model predictions outputs = model(**inputs) logits_per_image = outputs.logits_per_image probs = logits_per_image.softmax(dim=1) confidence = float(probs[0][0]) return f"Confidence that the image contains '{text_input}': {confidence:.2%}" def process_image_fastsam(image): # Convert PIL image to numpy array image_np = np.array(image) # Run FastSAM inference everything_results = fast_sam(image_np, device='cpu', retina_masks=True, imgsz=1024, conf=0.4, iou=0.9) prompt_process = FastSAMPrompt(image_np, everything_results, device='cpu') # Get everything mask ann = prompt_process.everything() # Convert annotation to image result_image = prompt_process.plot_to_result() return Image.fromarray(result_image) # Create Gradio interface with gr.Blocks() as demo: gr.Markdown("# CLIP and FastSAM Demo") with gr.Tab("CLIP Zero-Shot Classification"): with gr.Row(): image_input = gr.Image(type="pil", label="Input Image") text_input = gr.Textbox(label="What do you want to check in the image?", placeholder="Type here...") output_text = gr.Textbox(label="Result") classify_btn = gr.Button("Classify") classify_btn.click(fn=process_image_clip, inputs=[image_input, text_input], outputs=output_text) with gr.Tab("FastSAM Segmentation"): with gr.Row(): image_input_sam = gr.Image(type="pil", label="Input Image") image_output = gr.Image(type="pil", label="Segmentation Result") segment_btn = gr.Button("Segment") segment_btn.click(fn=process_image_fastsam, inputs=[image_input_sam], outputs=image_output) if __name__ == "__main__": demo.launch()