Spaces:
Sleeping
Sleeping
import os | |
import torch | |
import gradio as gr | |
from tqdm import tqdm | |
from PIL import Image | |
import torch.nn.functional as F | |
from torchvision import transforms as tfms | |
from transformers import CLIPTextModel, CLIPTokenizer, logging | |
from diffusers import AutoencoderKL, LMSDiscreteScheduler, UNet2DConditionModel, DiffusionPipeline | |
torch_device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu" | |
if "mps" == torch_device: os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = "1" | |
# Load the pipeline | |
model_path = "CompVis/stable-diffusion-v1-4" | |
sd_pipeline = DiffusionPipeline.from_pretrained( | |
model_path, | |
low_cpu_mem_usage=True, | |
torch_dtype=torch.float32 | |
).to(torch_device) | |
# Load textual inversions | |
sd_pipeline.load_textual_inversion("sd-concepts-library/illustration-style") | |
sd_pipeline.load_textual_inversion("sd-concepts-library/line-art") | |
sd_pipeline.load_textual_inversion("sd-concepts-library/hitokomoru-style-nao") | |
sd_pipeline.load_textual_inversion("sd-concepts-library/style-of-marc-allante") | |
sd_pipeline.load_textual_inversion("sd-concepts-library/midjourney-style") | |
sd_pipeline.load_textual_inversion("sd-concepts-library/hanfu-anime-style") | |
sd_pipeline.load_textual_inversion("sd-concepts-library/birb-style") | |
# Update style token dictionary | |
style_token_dict = { | |
"Illustration Style": '<illustration-style>', | |
"Line Art":'<line-art>', | |
"Hitokomoru Style":'<hitokomoru-style-nao>', | |
"Marc Allante": '<Marc_Allante>', | |
"Midjourney":'<midjourney-style>', | |
"Hanfu Anime": '<hanfu-anime-style>', | |
"Birb Style": '<birb-style>' | |
} | |
def apply_guidance(latents, guidance_method, loss_scale): | |
if guidance_method == 'Grayscale': | |
rgb = latents_to_pil(latents)[0] | |
gray = rgb.convert('L') | |
gray_latents = pil_to_latent(gray.convert('RGB')) | |
return latents + (gray_latents - latents) * loss_scale | |
elif guidance_method == 'Bright': | |
bright_latents = F.relu(latents) # Simple brightness increase | |
return latents + (bright_latents - latents) * loss_scale | |
elif guidance_method == 'Contrast': | |
mean = latents.mean() | |
contrast_latents = (latents - mean) * 2 + mean | |
return latents + (contrast_latents - latents) * loss_scale | |
elif guidance_method == 'Symmetry': | |
flipped_latents = torch.flip(latents, [3]) # Flip horizontally | |
return latents + (flipped_latents - latents) * loss_scale | |
elif guidance_method == 'Saturation': | |
rgb = latents_to_pil(latents)[0] | |
saturated = tfms.functional.adjust_saturation(tfms.ToTensor()(rgb), 2) | |
saturated_latents = pil_to_latent(tfms.ToPILImage()(saturated)) | |
return latents + (saturated_latents - latents) * loss_scale | |
else: | |
return latents | |
def generate_with_guidance(prompt, num_inference_steps, guidance_scale, seed, guidance_method, loss_scale): | |
generator = torch.Generator(device=torch_device).manual_seed(seed) | |
# Get the text embeddings | |
text_input = sd_pipeline.tokenizer(prompt, padding="max_length", max_length=sd_pipeline.tokenizer.model_max_length, truncation=True, return_tensors="pt") | |
with torch.no_grad(): | |
text_embeddings = sd_pipeline.text_encoder(text_input.input_ids.to(torch_device))[0] | |
# Set the timesteps | |
sd_pipeline.scheduler.set_timesteps(num_inference_steps) | |
# Prepare latents | |
latents = torch.randn( | |
(1, sd_pipeline.unet.in_channels, 64, 64), | |
generator=generator, | |
device=torch_device | |
) | |
latents = latents * sd_pipeline.scheduler.init_noise_sigma | |
# Denoising loop | |
for t in tqdm(sd_pipeline.scheduler.timesteps): | |
# Expand the latents for classifier-free guidance | |
latent_model_input = torch.cat([latents] * 2) | |
latent_model_input = sd_pipeline.scheduler.scale_model_input(latent_model_input, timestep=t) | |
# Predict the noise residual | |
with torch.no_grad(): | |
noise_pred = sd_pipeline.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample | |
# Perform guidance | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
# Apply custom guidance | |
latents = apply_guidance(latents, guidance_method, loss_scale / 10000) # Normalize loss_scale | |
# Compute the previous noisy sample x_t -> x_t-1 | |
latents = sd_pipeline.scheduler.step(noise_pred, t, latents).prev_sample | |
# Scale and decode the image latents with vae | |
latents = 1 / 0.18215 * latents | |
with torch.no_grad(): | |
image = sd_pipeline.vae.decode(latents).sample | |
# Convert to PIL Image | |
image = (image / 2 + 0.5).clamp(0, 1) | |
image = image.detach().cpu().permute(0, 2, 3, 1).numpy() | |
image = (image * 255).round().astype("uint8")[0] | |
image = Image.fromarray(image) | |
return image | |
def inference(text, style, inference_step, guidance_scale, seed, guidance_method, loss_scale): | |
prompt = text + " " + style_token_dict[style] | |
# Generate image with pipeline | |
image_pipeline = sd_pipeline( | |
prompt, | |
num_inference_steps=inference_step, | |
guidance_scale=guidance_scale, | |
generator=torch.Generator(device=torch_device).manual_seed(seed) | |
).images[0] | |
# Generate image with guidance | |
image_guide = generate_with_guidance(prompt, inference_step, guidance_scale, seed, guidance_method, loss_scale) | |
return image_pipeline, image_guide | |
title = "Generative with Textual Inversion and Guidance" | |
description = "A Gradio interface to infer Stable Diffusion and generate images with different art styles and guidance methods" | |
examples = [ | |
["A majestic castle on a floating island", 'Illustration Style', 20, 7.5, 42, 'Grayscale', 200], | |
["A cyberpunk cityscape at night", 'Midjourney', 25, 8.0, 123, 'Contrast', 300] | |
] | |
demo = gr.Interface(inference, | |
inputs = [gr.Textbox(label="Prompt", type="text"), | |
gr.Dropdown(label="Style", choices=list(style_token_dict.keys()), value="Illustration Style"), | |
gr.Slider(1, 50, 10, step = 1, label="Inference steps"), | |
gr.Slider(1, 10, 7.5, step = 0.1, label="Guidance scale"), | |
gr.Slider(0, 10000, 42, step = 1, label="Seed"), | |
gr.Dropdown(label="Guidance method", choices=['Grayscale', 'Bright', 'Contrast', | |
'Symmetry', 'Saturation'], value="Grayscale"), | |
gr.Slider(100, 10000, 200, step = 100, label="Loss scale")], | |
outputs= [gr.Image(width=512, height=512, label="Generated art"), | |
gr.Image(width=512, height=512, label="Generated art with guidance")], | |
title=title, | |
description=description, | |
examples=examples) | |
demo.launch() |