Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,13 +1,93 @@
|
|
1 |
import os
|
2 |
import torch
|
3 |
import gradio as gr
|
4 |
-
from tqdm import tqdm
|
5 |
from PIL import Image
|
6 |
import torch.nn.functional as F
|
7 |
from torchvision import transforms as tfms
|
8 |
-
from
|
9 |
-
from diffusers import AutoencoderKL, LMSDiscreteScheduler, UNet2DConditionModel, DiffusionPipeline
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
HTML_TEMPLATE = """
|
12 |
<style>
|
13 |
body {
|
@@ -145,105 +225,7 @@ HTML_TEMPLATE = """
|
|
145 |
</div>
|
146 |
"""
|
147 |
|
148 |
-
|
149 |
-
if "mps" == torch_device: os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = "1"
|
150 |
-
|
151 |
-
# Load the pipeline
|
152 |
-
model_path = "CompVis/stable-diffusion-v1-4"
|
153 |
-
sd_pipeline = DiffusionPipeline.from_pretrained(
|
154 |
-
model_path,
|
155 |
-
low_cpu_mem_usage=True,
|
156 |
-
torch_dtype=torch.float32
|
157 |
-
).to(torch_device)
|
158 |
-
|
159 |
-
# Load textual inversions
|
160 |
-
sd_pipeline.load_textual_inversion("sd-concepts-library/illustration-style")
|
161 |
-
sd_pipeline.load_textual_inversion("sd-concepts-library/line-art")
|
162 |
-
sd_pipeline.load_textual_inversion("sd-concepts-library/hitokomoru-style-nao")
|
163 |
-
sd_pipeline.load_textual_inversion("sd-concepts-library/style-of-marc-allante")
|
164 |
-
sd_pipeline.load_textual_inversion("sd-concepts-library/midjourney-style")
|
165 |
-
sd_pipeline.load_textual_inversion("sd-concepts-library/hanfu-anime-style")
|
166 |
-
sd_pipeline.load_textual_inversion("sd-concepts-library/birb-style")
|
167 |
-
|
168 |
-
# Update style token dictionary
|
169 |
-
style_token_dict = {
|
170 |
-
"Illustration Style": '<illustration-style>',
|
171 |
-
"Line Art":'<line-art>',
|
172 |
-
"Hitokomoru Style":'<hitokomoru-style-nao>',
|
173 |
-
"Marc Allante": '<Marc_Allante>',
|
174 |
-
"Midjourney":'<midjourney-style>',
|
175 |
-
"Hanfu Anime": '<hanfu-anime-style>',
|
176 |
-
"Birb Style": '<birb-style>'
|
177 |
-
}
|
178 |
-
|
179 |
-
def apply_guidance(image, guidance_method, loss_scale):
|
180 |
-
# Convert PIL Image to tensor
|
181 |
-
img_tensor = tfms.ToTensor()(image).unsqueeze(0).to(torch_device)
|
182 |
-
|
183 |
-
if guidance_method == 'Grayscale':
|
184 |
-
gray = tfms.Grayscale(3)(img_tensor)
|
185 |
-
guided = img_tensor + (gray - img_tensor) * (loss_scale / 10000)
|
186 |
-
elif guidance_method == 'Bright':
|
187 |
-
bright = F.relu(img_tensor) # Simple brightness increase
|
188 |
-
guided = img_tensor + (bright - img_tensor) * (loss_scale / 10000)
|
189 |
-
elif guidance_method == 'Contrast':
|
190 |
-
mean = img_tensor.mean()
|
191 |
-
contrast = (img_tensor - mean) * 2 + mean
|
192 |
-
guided = img_tensor + (contrast - img_tensor) * (loss_scale / 10000)
|
193 |
-
elif guidance_method == 'Symmetry':
|
194 |
-
flipped = torch.flip(img_tensor, [3]) # Flip horizontally
|
195 |
-
guided = img_tensor + (flipped - img_tensor) * (loss_scale / 10000)
|
196 |
-
elif guidance_method == 'Saturation':
|
197 |
-
saturated = tfms.functional.adjust_saturation(img_tensor, 2)
|
198 |
-
guided = img_tensor + (saturated - img_tensor) * (loss_scale / 10000)
|
199 |
-
else:
|
200 |
-
return image
|
201 |
-
|
202 |
-
# Convert back to PIL Image
|
203 |
-
guided = guided.squeeze(0).clamp(0, 1)
|
204 |
-
guided = (guided * 255).byte().cpu().permute(1, 2, 0).numpy()
|
205 |
-
return Image.fromarray(guided)
|
206 |
-
|
207 |
-
def generate_with_guidance(prompt, num_inference_steps, guidance_scale, seed, guidance_method, loss_scale):
|
208 |
-
# Generate image with pipeline
|
209 |
-
generator = torch.Generator(device=torch_device).manual_seed(seed)
|
210 |
-
image = sd_pipeline(
|
211 |
-
prompt,
|
212 |
-
num_inference_steps=num_inference_steps,
|
213 |
-
guidance_scale=guidance_scale,
|
214 |
-
generator=generator
|
215 |
-
).images[0]
|
216 |
-
|
217 |
-
# Apply guidance
|
218 |
-
guided_image = apply_guidance(image, guidance_method, loss_scale)
|
219 |
-
|
220 |
-
return guided_image
|
221 |
-
|
222 |
-
def inference(text, style, inference_step, guidance_scale, seed, guidance_method, loss_scale):
|
223 |
-
prompt = text + " " + style_token_dict[style]
|
224 |
-
|
225 |
-
# Generate image with pipeline
|
226 |
-
image_pipeline = sd_pipeline(
|
227 |
-
prompt,
|
228 |
-
num_inference_steps=inference_step,
|
229 |
-
guidance_scale=guidance_scale,
|
230 |
-
generator=torch.Generator(device=torch_device).manual_seed(seed)
|
231 |
-
).images[0]
|
232 |
-
|
233 |
-
# Generate image with guidance
|
234 |
-
image_guide = generate_with_guidance(prompt, inference_step, guidance_scale, seed, guidance_method, loss_scale)
|
235 |
-
|
236 |
-
return image_pipeline, image_guide
|
237 |
-
|
238 |
-
title = "Generative with Textual Inversion and Guidance"
|
239 |
-
description = "A Gradio interface to infer Stable Diffusion and generate images with different art styles and guidance methods"
|
240 |
-
examples = [
|
241 |
-
["A majestic castle on a floating island", 'Illustration Style', 10, 7.5, 42, 'Grayscale', 200]
|
242 |
-
]
|
243 |
-
|
244 |
-
title = "Generative Art with Textual Inversion and Guidance"
|
245 |
-
description = "Create unique artworks using Stable Diffusion with various styles and guidance methods."
|
246 |
-
|
247 |
with gr.Blocks(css=HTML_TEMPLATE) as demo:
|
248 |
gr.HTML(HTML_TEMPLATE)
|
249 |
with gr.Row():
|
@@ -280,4 +262,5 @@ with gr.Blocks(css=HTML_TEMPLATE) as demo:
|
|
280 |
cache_examples=True,
|
281 |
)
|
282 |
|
283 |
-
|
|
|
|
1 |
import os
|
2 |
import torch
|
3 |
import gradio as gr
|
|
|
4 |
from PIL import Image
|
5 |
import torch.nn.functional as F
|
6 |
from torchvision import transforms as tfms
|
7 |
+
from diffusers import DiffusionPipeline
|
|
|
8 |
|
9 |
+
# Determine the appropriate device and dtype
|
10 |
+
torch_device = "cuda" if torch.cuda.is_available() else "cpu"
|
11 |
+
torch_dtype = torch.float16 if torch_device == "cuda" else torch.float32
|
12 |
+
|
13 |
+
# Load the pipeline
|
14 |
+
model_path = "CompVis/stable-diffusion-v1-4"
|
15 |
+
sd_pipeline = DiffusionPipeline.from_pretrained(
|
16 |
+
model_path,
|
17 |
+
torch_dtype=torch_dtype,
|
18 |
+
low_cpu_mem_usage=True if torch_device == "cpu" else False
|
19 |
+
).to(torch_device)
|
20 |
+
|
21 |
+
# Load textual inversions
|
22 |
+
sd_pipeline.load_textual_inversion("sd-concepts-library/illustration-style")
|
23 |
+
sd_pipeline.load_textual_inversion("sd-concepts-library/line-art")
|
24 |
+
sd_pipeline.load_textual_inversion("sd-concepts-library/hitokomoru-style-nao")
|
25 |
+
sd_pipeline.load_textual_inversion("sd-concepts-library/style-of-marc-allante")
|
26 |
+
sd_pipeline.load_textual_inversion("sd-concepts-library/midjourney-style")
|
27 |
+
sd_pipeline.load_textual_inversion("sd-concepts-library/hanfu-anime-style")
|
28 |
+
sd_pipeline.load_textual_inversion("sd-concepts-library/birb-style")
|
29 |
+
|
30 |
+
# Update style token dictionary
|
31 |
+
style_token_dict = {
|
32 |
+
"Illustration Style": '<illustration-style>',
|
33 |
+
"Line Art": '<line-art>',
|
34 |
+
"Hitokomoru Style": '<hitokomoru-style-nao>',
|
35 |
+
"Marc Allante": '<Marc_Allante>',
|
36 |
+
"Midjourney": '<midjourney-style>',
|
37 |
+
"Hanfu Anime": '<hanfu-anime-style>',
|
38 |
+
"Birb Style": '<birb-style>'
|
39 |
+
}
|
40 |
+
|
41 |
+
def apply_guidance(image, guidance_method, loss_scale):
|
42 |
+
# Convert PIL Image to tensor
|
43 |
+
img_tensor = tfms.ToTensor()(image).unsqueeze(0).to(torch_device)
|
44 |
+
|
45 |
+
if guidance_method == 'Grayscale':
|
46 |
+
gray = tfms.Grayscale(3)(img_tensor)
|
47 |
+
guided = img_tensor + (gray - img_tensor) * (loss_scale / 10000)
|
48 |
+
elif guidance_method == 'Bright':
|
49 |
+
bright = F.relu(img_tensor) # Simple brightness increase
|
50 |
+
guided = img_tensor + (bright - img_tensor) * (loss_scale / 10000)
|
51 |
+
elif guidance_method == 'Contrast':
|
52 |
+
mean = img_tensor.mean()
|
53 |
+
contrast = (img_tensor - mean) * 2 + mean
|
54 |
+
guided = img_tensor + (contrast - img_tensor) * (loss_scale / 10000)
|
55 |
+
elif guidance_method == 'Symmetry':
|
56 |
+
flipped = torch.flip(img_tensor, [3]) # Flip horizontally
|
57 |
+
guided = img_tensor + (flipped - img_tensor) * (loss_scale / 10000)
|
58 |
+
elif guidance_method == 'Saturation':
|
59 |
+
saturated = tfms.functional.adjust_saturation(img_tensor, 2)
|
60 |
+
guided = img_tensor + (saturated - img_tensor) * (loss_scale / 10000)
|
61 |
+
else:
|
62 |
+
return image
|
63 |
+
|
64 |
+
# Convert back to PIL Image
|
65 |
+
guided = guided.squeeze(0).clamp(0, 1)
|
66 |
+
guided = (guided * 255).byte().cpu().permute(1, 2, 0).numpy()
|
67 |
+
return Image.fromarray(guided)
|
68 |
+
|
69 |
+
def inference(text, style, inference_step, guidance_scale, seed, guidance_method, loss_scale, image_size):
|
70 |
+
prompt = text + " " + style_token_dict[style]
|
71 |
+
|
72 |
+
# Convert image_size from string to tuple of integers
|
73 |
+
size = tuple(map(int, image_size.split('x')))
|
74 |
+
|
75 |
+
# Generate image with pipeline
|
76 |
+
image_pipeline = sd_pipeline(
|
77 |
+
prompt,
|
78 |
+
num_inference_steps=inference_step,
|
79 |
+
guidance_scale=guidance_scale,
|
80 |
+
generator=torch.Generator(device=torch_device).manual_seed(seed),
|
81 |
+
height=size[1],
|
82 |
+
width=size[0]
|
83 |
+
).images[0]
|
84 |
+
|
85 |
+
# Apply guidance
|
86 |
+
image_guide = apply_guidance(image_pipeline, guidance_method, loss_scale)
|
87 |
+
|
88 |
+
return image_pipeline, image_guide
|
89 |
+
|
90 |
+
# HTML Template
|
91 |
HTML_TEMPLATE = """
|
92 |
<style>
|
93 |
body {
|
|
|
225 |
</div>
|
226 |
"""
|
227 |
|
228 |
+
# Gradio Interface
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
229 |
with gr.Blocks(css=HTML_TEMPLATE) as demo:
|
230 |
gr.HTML(HTML_TEMPLATE)
|
231 |
with gr.Row():
|
|
|
262 |
cache_examples=True,
|
263 |
)
|
264 |
|
265 |
+
if __name__ == "__main__":
|
266 |
+
demo.launch()
|