Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,29 +1,25 @@
|
|
1 |
-
import
|
2 |
-
import PIL
|
3 |
import torch
|
4 |
-
import
|
5 |
-
from PIL import Image
|
6 |
from tqdm import tqdm
|
|
|
7 |
import torch.nn.functional as F
|
8 |
-
import
|
9 |
-
from
|
10 |
-
|
11 |
-
# configurations
|
12 |
-
torch_device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
|
13 |
-
height, width = 512,512
|
14 |
-
guidance_scale = 8
|
15 |
-
loss_scale = 200
|
16 |
-
num_inference_steps = 50
|
17 |
|
|
|
|
|
18 |
|
|
|
19 |
model_path = "CompVis/stable-diffusion-v1-4"
|
20 |
sd_pipeline = DiffusionPipeline.from_pretrained(
|
21 |
model_path,
|
22 |
-
low_cpu_mem_usage
|
23 |
torch_dtype=torch.float32
|
24 |
).to(torch_device)
|
25 |
|
26 |
-
|
27 |
sd_pipeline.load_textual_inversion("sd-concepts-library/illustration-style")
|
28 |
sd_pipeline.load_textual_inversion("sd-concepts-library/line-art")
|
29 |
sd_pipeline.load_textual_inversion("sd-concepts-library/hitokomoru-style-nao")
|
@@ -32,199 +28,77 @@ sd_pipeline.load_textual_inversion("sd-concepts-library/midjourney-style")
|
|
32 |
sd_pipeline.load_textual_inversion("sd-concepts-library/hanfu-anime-style")
|
33 |
sd_pipeline.load_textual_inversion("sd-concepts-library/birb-style")
|
34 |
|
35 |
-
|
36 |
-
|
37 |
-
"Illustration Style": '<illustration-style>',
|
38 |
-
"
|
39 |
-
"
|
|
|
|
|
|
|
40 |
"Birb Style": '<birb-style>'
|
41 |
}
|
42 |
|
43 |
-
# Define seeds for all the styles
|
44 |
-
seed_list = [11, 56, 110, 65, 5, 29, 47]
|
45 |
-
|
46 |
-
# Loss Function based on Edge Detection
|
47 |
-
def edge_detection(image):
|
48 |
-
channels = image.shape[1]
|
49 |
-
|
50 |
-
# Define the kernels for Edge Detection
|
51 |
-
ed_x = torch.tensor([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]], dtype=torch.float32).unsqueeze(0).unsqueeze(0)
|
52 |
-
ed_y = torch.tensor([[1, 2, 1], [0, 0, 0], [-1, -2, -1]], dtype=torch.float32).unsqueeze(0).unsqueeze(0)
|
53 |
-
|
54 |
-
# Replicate the Edge detection kernels for each channel
|
55 |
-
ed_x = ed_x.repeat(channels, 1, 1, 1).to(image.device)
|
56 |
-
ed_y = ed_y.repeat(channels, 1, 1, 1).to(image.device)
|
57 |
-
|
58 |
-
# ed_x = ed_x.to(torch.float16)
|
59 |
-
# ed_y = ed_y.to(torch.float16)
|
60 |
-
|
61 |
-
# Convolve the image with the Edge detection kernels
|
62 |
-
conv_ed_x = F.conv2d(image, ed_x, padding=1, groups=channels)
|
63 |
-
conv_ed_y = F.conv2d(image, ed_y, padding=1, groups=channels)
|
64 |
-
|
65 |
-
# Combine the x and y gradients after convolution
|
66 |
-
ed_value = torch.sqrt(conv_ed_x**2 + conv_ed_y**2)
|
67 |
-
|
68 |
-
return ed_value
|
69 |
-
|
70 |
-
def edge_loss(image):
|
71 |
-
ed_value = edge_detection(image)
|
72 |
-
ed_capped = (ed_value > 0.5).to(torch.float32)
|
73 |
-
return F.mse_loss(ed_value, ed_capped)
|
74 |
-
|
75 |
-
def compute_loss(original_image, loss_type):
|
76 |
-
|
77 |
-
if loss_type == 'blue':
|
78 |
-
# blue loss
|
79 |
-
# [:,2] -> all images in batch, only the blue channel
|
80 |
-
error = torch.abs(original_image[:,2] - 0.9).mean()
|
81 |
-
elif loss_type == 'edge':
|
82 |
-
# edge loss
|
83 |
-
error = edge_loss(original_image)
|
84 |
-
elif loss_type == 'contrast':
|
85 |
-
# RGB to Gray loss
|
86 |
-
transformed_image = T.functional.adjust_contrast(original_image, contrast_factor = 2)
|
87 |
-
error = torch.abs(transformed_image - original_image).mean()
|
88 |
-
elif loss_type == 'brightness':
|
89 |
-
# brightnesss loss
|
90 |
-
transformed_image = T.functional.adjust_brightness(original_image, brightness_factor = 2)
|
91 |
-
error = torch.abs(transformed_image - original_image).mean()
|
92 |
-
elif loss_type == 'sharpness':
|
93 |
-
# sharpness loss
|
94 |
-
transformed_image = T.functional.adjust_sharpness(original_image, sharpness_factor = 2)
|
95 |
-
error = torch.abs(transformed_image - original_image).mean()
|
96 |
-
elif loss_type == 'saturation':
|
97 |
-
# saturation loss
|
98 |
-
transformed_image = T.functional.adjust_saturation(original_image, saturation_factor = 10)
|
99 |
-
error = torch.abs(transformed_image - original_image).mean()
|
100 |
-
else:
|
101 |
-
print("error. Loss not defined")
|
102 |
-
|
103 |
-
return error
|
104 |
-
|
105 |
-
def get_examples():
|
106 |
-
examples = [
|
107 |
-
['A bird sitting on a tree', 'Midjourney', 'edge']
|
108 |
-
]
|
109 |
-
return examples
|
110 |
-
|
111 |
-
# Existing functions (latents_to_pil, show_image, generate_image)
|
112 |
-
# ... (Copy all the existing functions here)
|
113 |
-
def latents_to_pil(latents):
|
114 |
-
# bath of latents -> list of images
|
115 |
-
latents = (1 / 0.18215) * latents
|
116 |
-
with torch.no_grad():
|
117 |
-
image = sd_pipeline.vae.decode(latents).sample
|
118 |
-
image = (image / 2 + 0.5).clamp(0, 1) # 0 to 1
|
119 |
-
image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
|
120 |
-
image = (image * 255).round().astype("uint8")
|
121 |
-
return Image.fromarray(image[0])
|
122 |
-
|
123 |
-
|
124 |
-
def show_image(prompt, concept, guidance_type):
|
125 |
-
|
126 |
-
for idx, sd in enumerate(styles_mapping.keys()):
|
127 |
-
if(sd == concept):
|
128 |
-
break
|
129 |
-
seed = seed_list[idx]
|
130 |
-
prompt = f"{prompt} in the style of {styles_mapping[sd]}"
|
131 |
-
styled_image_without_loss = latents_to_pil(generate_image(seed, prompt, guidance_type, loss_flag=False))
|
132 |
-
styled_image_with_loss = latents_to_pil(generate_image(seed, prompt, guidance_type, loss_flag=True))
|
133 |
-
return([styled_image_without_loss, styled_image_with_loss])
|
134 |
-
|
135 |
|
136 |
-
def
|
137 |
-
|
138 |
-
generator = torch.manual_seed(seed)
|
139 |
-
batch_size = 1
|
140 |
-
|
141 |
-
# scheduler
|
142 |
-
scheduler = LMSDiscreteScheduler(beta_start = 0.00085, beta_end = 0.012, beta_schedule = "scaled_linear", num_train_timesteps = 1000)
|
143 |
scheduler.set_timesteps(num_inference_steps)
|
144 |
scheduler.timesteps = scheduler.timesteps.to(torch.float32)
|
145 |
|
146 |
-
|
147 |
-
text_input = sd_pipeline.tokenizer(prompt, padding='max_length', max_length = sd_pipeline.tokenizer.model_max_length, truncation= True, return_tensors="pt")
|
148 |
-
input_ids = text_input.input_ids.to(torch_device)
|
149 |
-
|
150 |
with torch.no_grad():
|
151 |
-
|
152 |
-
|
153 |
-
max_length = text_input.input_ids.shape[-1]
|
154 |
-
uncond_input = sd_pipeline.tokenizer(
|
155 |
-
[""] * batch_size, padding="max_length", max_length= max_length, return_tensors="pt"
|
156 |
-
)
|
157 |
|
|
|
|
|
158 |
with torch.no_grad():
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
images = show_image(prompt, style, guidance_type)
|
210 |
-
return images[0], images[1]
|
211 |
-
|
212 |
-
# Create Gradio interface
|
213 |
-
iface = gr.Interface(
|
214 |
-
fn=generate_images,
|
215 |
-
inputs=[
|
216 |
-
gr.Textbox(label="Prompt"),
|
217 |
-
gr.Dropdown(list(styles_mapping.keys()), label="Style"),
|
218 |
-
gr.Dropdown(["blue", "edge", "contrast", "brightness", "sharpness", "saturation"], label="Guidance Type"),
|
219 |
-
],
|
220 |
-
outputs=[
|
221 |
-
gr.Image(label="Image without Loss"),
|
222 |
-
gr.Image(label="Image with Loss"),
|
223 |
-
],
|
224 |
-
examples=get_examples(),
|
225 |
-
title="Text Inversion Image Generation",
|
226 |
-
description="Generate images using text inversion with different styles and guidance types.",
|
227 |
-
)
|
228 |
-
|
229 |
-
# Launch the app
|
230 |
-
iface.launch()
|
|
|
1 |
+
import os
|
|
|
2 |
import torch
|
3 |
+
import gradio as gr
|
|
|
4 |
from tqdm import tqdm
|
5 |
+
from PIL import Image
|
6 |
import torch.nn.functional as F
|
7 |
+
from torchvision import transforms as tfms
|
8 |
+
from transformers import CLIPTextModel, CLIPTokenizer, logging
|
9 |
+
from diffusers import AutoencoderKL, LMSDiscreteScheduler, UNet2DConditionModel, DiffusionPipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
+
torch_device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
|
12 |
+
if "mps" == torch_device: os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = "1"
|
13 |
|
14 |
+
# Load the pipeline
|
15 |
model_path = "CompVis/stable-diffusion-v1-4"
|
16 |
sd_pipeline = DiffusionPipeline.from_pretrained(
|
17 |
model_path,
|
18 |
+
low_cpu_mem_usage=True,
|
19 |
torch_dtype=torch.float32
|
20 |
).to(torch_device)
|
21 |
|
22 |
+
# Load textual inversions
|
23 |
sd_pipeline.load_textual_inversion("sd-concepts-library/illustration-style")
|
24 |
sd_pipeline.load_textual_inversion("sd-concepts-library/line-art")
|
25 |
sd_pipeline.load_textual_inversion("sd-concepts-library/hitokomoru-style-nao")
|
|
|
28 |
sd_pipeline.load_textual_inversion("sd-concepts-library/hanfu-anime-style")
|
29 |
sd_pipeline.load_textual_inversion("sd-concepts-library/birb-style")
|
30 |
|
31 |
+
# Update style token dictionary
|
32 |
+
style_token_dict = {
|
33 |
+
"Illustration Style": '<illustration-style>',
|
34 |
+
"Line Art":'<line-art>',
|
35 |
+
"Hitokomoru Style":'<hitokomoru-style-nao>',
|
36 |
+
"Marc Allante": '<Marc_Allante>',
|
37 |
+
"Midjourney":'<midjourney-style>',
|
38 |
+
"Hanfu Anime": '<hanfu-anime-style>',
|
39 |
"Birb Style": '<birb-style>'
|
40 |
}
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
+
def set_timesteps(scheduler, num_inference_steps):
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
scheduler.set_timesteps(num_inference_steps)
|
45 |
scheduler.timesteps = scheduler.timesteps.to(torch.float32)
|
46 |
|
47 |
+
def pil_to_latent(input_im):
|
|
|
|
|
|
|
48 |
with torch.no_grad():
|
49 |
+
latent = vae.encode(tfms.ToTensor()(input_im).unsqueeze(0).to(torch_device)*2-1) # Note scaling
|
50 |
+
return 0.18215 * latent.latent_dist.sample()
|
|
|
|
|
|
|
|
|
51 |
|
52 |
+
def latents_to_pil(latents):
|
53 |
+
latents = (1 / 0.18215) * latents
|
54 |
with torch.no_grad():
|
55 |
+
image = vae.decode(latents).sample
|
56 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
57 |
+
image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
|
58 |
+
images = (image * 255).round().astype("uint8")
|
59 |
+
pil_images = [Image.fromarray(image) for image in images]
|
60 |
+
return pil_images
|
61 |
+
|
62 |
+
def generate_with_pipeline(prompt, num_inference_steps, guidance_scale, seed):
|
63 |
+
generator = torch.Generator(device=torch_device).manual_seed(seed)
|
64 |
+
image = sd_pipeline(
|
65 |
+
prompt,
|
66 |
+
num_inference_steps=num_inference_steps,
|
67 |
+
guidance_scale=guidance_scale,
|
68 |
+
generator=generator
|
69 |
+
).images[0]
|
70 |
+
return image
|
71 |
+
|
72 |
+
def inference(text, style, inference_step, guidance_scale, seed, guidance_method, loss_scale):
|
73 |
+
prompt = text + " " + style_token_dict[style]
|
74 |
+
|
75 |
+
# Generate image with pipeline
|
76 |
+
image_pipeline = generate_with_pipeline(prompt, inference_step, guidance_scale, seed)
|
77 |
+
|
78 |
+
# For the guided image, we'll need to implement a custom pipeline or modify the existing one
|
79 |
+
# This is a placeholder and would need to be implemented
|
80 |
+
image_guide = image_pipeline # This should be replaced with actual guided generation
|
81 |
+
|
82 |
+
return image_pipeline, image_guide
|
83 |
+
|
84 |
+
title = "Stable Diffusion with Textual Inversion"
|
85 |
+
description = "A simple Gradio interface to infer Stable Diffusion and generate images with different art styles"
|
86 |
+
examples = [["A sweet potato farm", 'Illustration Style', 10, 4.5, 1, 'Grayscale', 100],
|
87 |
+
["Sky full of cotton candy", 'Line Art', 10, 9.5, 2, 'Bright', 200]]
|
88 |
+
|
89 |
+
demo = gr.Interface(inference,
|
90 |
+
inputs = [gr.Textbox(label="Prompt", type="text"),
|
91 |
+
gr.Dropdown(label="Style", choices=list(style_token_dict.keys()), value="Illustration Style"),
|
92 |
+
gr.Slider(10, 30, 10, step = 1, label="Inference steps"),
|
93 |
+
gr.Slider(1, 10, 7.5, step = 0.1, label="Guidance scale"),
|
94 |
+
gr.Slider(0, 10000, 1, step = 1, label="Seed"),
|
95 |
+
gr.Dropdown(label="Guidance method", choices=['Grayscale', 'Bright', 'Contrast',
|
96 |
+
'Symmetry', 'Saturation'], value="Grayscale"),
|
97 |
+
gr.Slider(100, 10000, 200, step = 100, label="Loss scale")],
|
98 |
+
outputs= [gr.Image(width=320, height=320, label="Generated art"),
|
99 |
+
gr.Image(width=320, height=320, label="Generated art with guidance")],
|
100 |
+
title=title,
|
101 |
+
description=description,
|
102 |
+
examples=examples)
|
103 |
+
|
104 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|