Update app.py
Browse files
app.py
CHANGED
@@ -1,84 +1,157 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
from PIL import Image
|
|
|
4 |
import torch
|
5 |
-
import
|
6 |
|
7 |
-
#
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
print("FlashAttention not available, falling back to eager implementation.")
|
22 |
-
phi_model = AutoModelForCausalLM.from_pretrained(
|
23 |
-
phi_model_id,
|
24 |
-
device_map="auto",
|
25 |
-
trust_remote_code=True,
|
26 |
-
torch_dtype=torch.float16,
|
27 |
-
_attn_implementation="eager"
|
28 |
)
|
29 |
-
|
30 |
-
phi_processor = AutoProcessor.from_pretrained(phi_model_id, trust_remote_code=True)
|
31 |
-
|
32 |
-
# Load Llama 3.1 model
|
33 |
-
llama_model_id = "meta-llama/Llama-3.1-8B"
|
34 |
-
try:
|
35 |
-
llama_pipeline = pipeline("text-generation", model=llama_model_id, device_map="auto", torch_dtype=torch.float16)
|
36 |
-
except Exception as e:
|
37 |
-
print(f"Error loading Llama 3.1 model: {e}")
|
38 |
-
print("Falling back to a smaller, open-source model.")
|
39 |
-
llama_model_id = "gpt2" # Fallback to a smaller, open-source model
|
40 |
-
llama_pipeline = pipeline("text-generation", model=llama_model_id, device_map="auto")
|
41 |
-
|
42 |
-
def analyze_image(image, query):
|
43 |
-
prompt = f"<|user|>\n<|image_1|>\n{query}<|end|>\n<|assistant|>\n"
|
44 |
-
inputs = phi_processor(prompt, images=image, return_tensors="pt").to(phi_model.device)
|
45 |
|
46 |
-
|
47 |
-
|
48 |
-
return phi_processor.decode(output[0], skip_special_tokens=True)
|
49 |
-
|
50 |
-
def generate_text(query, history):
|
51 |
-
context = "\n".join([f"{h[0]}\n{h[1]}" for h in history])
|
52 |
-
prompt = f"{context}\nHuman: {query}\nAI:"
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
response = generate_text(query, history)
|
62 |
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
with gr.Blocks() as demo:
|
67 |
-
gr.Markdown("# Multi-Modal AI Assistant")
|
68 |
-
|
69 |
-
with gr.Row():
|
70 |
-
image_input = gr.Image(type="numpy", label="Upload an image (optional)")
|
71 |
-
chat_history = gr.Chatbot(label="Chat History")
|
72 |
|
73 |
-
|
74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
-
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import spaces
|
3 |
from PIL import Image
|
4 |
+
import os
|
5 |
import torch
|
6 |
+
from transformers import AutoModelForCausalLM, AutoProcessor
|
7 |
|
8 |
+
# Load the model and processor
|
9 |
+
model_id = "microsoft/Phi-3.5-vision-instruct"
|
10 |
+
model = AutoModelForCausalLM.from_pretrained(
|
11 |
+
model_id,
|
12 |
+
trust_remote_code=True,
|
13 |
+
torch_dtype=torch.float16,
|
14 |
+
use_flash_attention_2=False, # Explicitly disable Flash Attention 2
|
15 |
+
)
|
16 |
+
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True, num_crops=16)
|
17 |
|
18 |
+
@spaces.GPU(duration=120)
|
19 |
+
def solve_math_problem(image):
|
20 |
+
# Move model to GPU for this function call
|
21 |
+
model.to('cuda')
|
22 |
+
|
23 |
+
# Prepare the input
|
24 |
+
messages = [
|
25 |
+
{"role": "user", "content": "<|image_1|>\nSolve this math problem step by step. Explain your reasoning clearly."},
|
26 |
+
]
|
27 |
+
prompt = processor.tokenizer.apply_chat_template(
|
28 |
+
messages, tokenize=False, add_generation_prompt=True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
+
# Process the input
|
32 |
+
inputs = processor(prompt, image, return_tensors="pt").to("cuda")
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
+
# Generate the response
|
35 |
+
generation_args = {
|
36 |
+
"max_new_tokens": 1000,
|
37 |
+
"temperature": 0.2,
|
38 |
+
"do_sample": True,
|
39 |
+
}
|
40 |
+
generate_ids = model.generate(**inputs, eos_token_id=processor.tokenizer.eos_token_id, **generation_args)
|
|
|
41 |
|
42 |
+
# Decode the response
|
43 |
+
generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
|
44 |
+
response = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
+
# Move model back to CPU to free up GPU memory
|
47 |
+
model.to('cpu')
|
48 |
+
return response
|
49 |
+
|
50 |
+
# Custom CSS
|
51 |
+
custom_css = """
|
52 |
+
<style>
|
53 |
+
body {
|
54 |
+
font-family: 'Arial', sans-serif;
|
55 |
+
background-color: #f0f3f7;
|
56 |
+
margin: 0;
|
57 |
+
padding: 0;
|
58 |
+
}
|
59 |
+
.container {
|
60 |
+
max-width: 1200px;
|
61 |
+
margin: 0 auto;
|
62 |
+
padding: 20px;
|
63 |
+
}
|
64 |
+
.header {
|
65 |
+
background-color: #2c3e50;
|
66 |
+
color: white;
|
67 |
+
padding: 20px 0;
|
68 |
+
text-align: center;
|
69 |
+
}
|
70 |
+
.header h1 {
|
71 |
+
margin: 0;
|
72 |
+
font-size: 2.5em;
|
73 |
+
}
|
74 |
+
.main-content {
|
75 |
+
display: flex;
|
76 |
+
justify-content: space-between;
|
77 |
+
margin-top: 30px;
|
78 |
+
}
|
79 |
+
.input-section, .output-section {
|
80 |
+
width: 48%;
|
81 |
+
background-color: white;
|
82 |
+
border-radius: 8px;
|
83 |
+
padding: 20px;
|
84 |
+
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
|
85 |
+
}
|
86 |
+
.gr-button {
|
87 |
+
background-color: #27ae60;
|
88 |
+
color: white;
|
89 |
+
border: none;
|
90 |
+
padding: 10px 20px;
|
91 |
+
border-radius: 5px;
|
92 |
+
cursor: pointer;
|
93 |
+
transition: background-color 0.3s;
|
94 |
+
}
|
95 |
+
.gr-button:hover {
|
96 |
+
background-color: #2ecc71;
|
97 |
+
}
|
98 |
+
.examples-section {
|
99 |
+
margin-top: 30px;
|
100 |
+
background-color: white;
|
101 |
+
border-radius: 8px;
|
102 |
+
padding: 20px;
|
103 |
+
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
|
104 |
+
}
|
105 |
+
.examples-section h3 {
|
106 |
+
margin-top: 0;
|
107 |
+
color: #2c3e50;
|
108 |
+
}
|
109 |
+
.footer {
|
110 |
+
text-align: center;
|
111 |
+
margin-top: 30px;
|
112 |
+
color: #7f8c8d;
|
113 |
+
}
|
114 |
+
</style>
|
115 |
+
"""
|
116 |
+
|
117 |
+
# Create the Gradio interface
|
118 |
+
with gr.Blocks(css=custom_css) as iface:
|
119 |
+
gr.HTML("""
|
120 |
+
<div class="header">
|
121 |
+
<h1>AI Math Equation Solver</h1>
|
122 |
+
<p>Upload an image of a math problem, and our AI will solve it step by step!</p>
|
123 |
+
</div>
|
124 |
+
""")
|
125 |
|
126 |
+
with gr.Row(equal_height=True):
|
127 |
+
with gr.Column():
|
128 |
+
gr.HTML("<h2>Upload Your Math Problem</h2>")
|
129 |
+
input_image = gr.Image(type="pil", label="Upload Math Problem Image")
|
130 |
+
submit_btn = gr.Button("Solve Problem", elem_classes=["gr-button"])
|
131 |
+
|
132 |
+
with gr.Column():
|
133 |
+
gr.HTML("<h2>Solution</h2>")
|
134 |
+
output_text = gr.Textbox(label="Step-by-step Solution", lines=10)
|
135 |
|
136 |
+
gr.HTML("<h3>Try These Examples</h3>")
|
137 |
+
examples = gr.Examples(
|
138 |
+
examples=[
|
139 |
+
os.path.join(os.path.dirname(__file__), "eqn1.png"),
|
140 |
+
os.path.join(os.path.dirname(__file__), "eqn2.png")
|
141 |
+
],
|
142 |
+
inputs=input_image,
|
143 |
+
outputs=output_text,
|
144 |
+
fn=solve_math_problem,
|
145 |
+
cache_examples=True,
|
146 |
)
|
147 |
+
|
148 |
+
gr.HTML("""
|
149 |
+
<div class="footer">
|
150 |
+
<p>Powered by Gradio and AI - Created for educational purposes</p>
|
151 |
+
</div>
|
152 |
+
""")
|
153 |
+
|
154 |
+
submit_btn.click(fn=solve_math_problem, inputs=input_image, outputs=output_text)
|
155 |
|
156 |
+
# Launch the app
|
157 |
+
iface.launch()
|