Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -2,6 +2,7 @@ import torch
|
|
2 |
import gradio as gr
|
3 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
from peft import PeftModel, PeftConfig
|
|
|
5 |
|
6 |
# Load model and tokenizer
|
7 |
MODEL_PATH = "sagar007/phi2_finetune"
|
@@ -9,29 +10,18 @@ MODEL_PATH = "sagar007/phi2_finetune"
|
|
9 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, trust_remote_code=True)
|
10 |
tokenizer.pad_token = tokenizer.eos_token
|
11 |
|
12 |
-
# Load the base model
|
13 |
base_model = AutoModelForCausalLM.from_pretrained(
|
14 |
"microsoft/phi-2",
|
15 |
-
torch_dtype=torch.float32,
|
16 |
-
device_map="
|
17 |
-
trust_remote_code=True
|
18 |
-
low_cpu_mem_usage=True
|
19 |
)
|
20 |
|
21 |
-
# Apply PEFT
|
22 |
peft_config = PeftConfig.from_pretrained(MODEL_PATH)
|
23 |
-
model = PeftModel.from_pretrained(base_model, MODEL_PATH
|
24 |
-
|
25 |
-
# Merge the PEFT model with the base model
|
26 |
-
model = model.merge_and_unload()
|
27 |
-
|
28 |
-
# Quantize the model
|
29 |
-
model = torch.quantization.quantize_dynamic(
|
30 |
-
model, {torch.nn.Linear}, dtype=torch.qint8
|
31 |
-
)
|
32 |
-
|
33 |
model.eval()
|
34 |
|
|
|
35 |
def generate_response(instruction, max_length=512):
|
36 |
prompt = f"Instruction: {instruction}\nResponse:"
|
37 |
inputs = tokenizer(prompt, return_tensors="pt")
|
@@ -55,8 +45,8 @@ def chatbot(message, history):
|
|
55 |
|
56 |
demo = gr.ChatInterface(
|
57 |
chatbot,
|
58 |
-
title="Fine-tuned Phi-2 Chatbot
|
59 |
-
description="This is a chatbot using a
|
60 |
theme="default",
|
61 |
examples=[
|
62 |
"Explain the concept of machine learning.",
|
|
|
2 |
import gradio as gr
|
3 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
from peft import PeftModel, PeftConfig
|
5 |
+
import spaces
|
6 |
|
7 |
# Load model and tokenizer
|
8 |
MODEL_PATH = "sagar007/phi2_finetune"
|
|
|
10 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, trust_remote_code=True)
|
11 |
tokenizer.pad_token = tokenizer.eos_token
|
12 |
|
|
|
13 |
base_model = AutoModelForCausalLM.from_pretrained(
|
14 |
"microsoft/phi-2",
|
15 |
+
torch_dtype=torch.float32, # Use float32 for CPU
|
16 |
+
device_map="auto",
|
17 |
+
trust_remote_code=True
|
|
|
18 |
)
|
19 |
|
|
|
20 |
peft_config = PeftConfig.from_pretrained(MODEL_PATH)
|
21 |
+
model = PeftModel.from_pretrained(base_model, MODEL_PATH)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
model.eval()
|
23 |
|
24 |
+
@spaces.GPU(duration=60)
|
25 |
def generate_response(instruction, max_length=512):
|
26 |
prompt = f"Instruction: {instruction}\nResponse:"
|
27 |
inputs = tokenizer(prompt, return_tensors="pt")
|
|
|
45 |
|
46 |
demo = gr.ChatInterface(
|
47 |
chatbot,
|
48 |
+
title="Fine-tuned Phi-2 Chatbot",
|
49 |
+
description="This is a chatbot using a fine-tuned version of the Phi-2 model.",
|
50 |
theme="default",
|
51 |
examples=[
|
52 |
"Explain the concept of machine learning.",
|