Spaces:
Running
Running
from fastapi import FastAPI, Response | |
from fastapi.responses import FileResponse | |
from kokoro import KPipeline | |
import soundfile as sf | |
import os | |
import numpy as np | |
import torch | |
from huggingface_hub import InferenceClient | |
def llm_chat_response(text): | |
HF_TOKEN = os.getenv("HF_TOKEN") | |
client = InferenceClient(api_key=HF_TOKEN) | |
messages = [ | |
{ | |
"role": "user", | |
"content": [ | |
{ | |
"type": "text", | |
"text": text + str('describe in one line only') | |
} #, | |
# { | |
# "type": "image_url", | |
# "image_url": { | |
# "url": "https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg" | |
# } | |
# } | |
] | |
} | |
] | |
response_from_llama = client.chat.completions.create( | |
model="meta-llama/Llama-3.2-11B-Vision-Instruct", | |
messages=messages, | |
max_tokens=500) | |
return response_from_llama.choices[0].message['content'] | |
app = FastAPI() | |
# Initialize pipeline once at startup | |
pipeline = KPipeline(lang_code='a') | |
async def generate_audio(text: str, voice: str = "af_heart", speed: float = 1.0): | |
text_reply = llm_chat_response(text) | |
# Generate audio | |
generator = pipeline( | |
text_reply, | |
voice=voice, | |
speed=speed, | |
split_pattern=r'\n+' | |
) | |
# # Save first segment only for demo | |
# for i, (gs, ps, audio) in enumerate(generator): | |
# sf.write(f"output_{i}.wav", audio, 24000) | |
# return FileResponse( | |
# f"output_{i}.wav", | |
# media_type="audio/wav", | |
# filename="output.wav" | |
# ) | |
# return Response("No audio generated", status_code=400) | |
# Process only the first segment for demo | |
for i, (gs, ps, audio) in enumerate(generator): | |
# Convert PyTorch tensor to NumPy array | |
audio_numpy = audio.cpu().numpy() | |
# Convert to 16-bit PCM | |
# Ensure the audio is in the range [-1, 1] | |
audio_numpy = np.clip(audio_numpy, -1, 1) | |
# Convert to 16-bit signed integers | |
pcm_data = (audio_numpy * 32767).astype(np.int16) | |
# Convert to bytes (automatically uses row-major order) | |
raw_audio = pcm_data.tobytes() | |
# Return PCM data with minimal necessary headers | |
return Response( | |
content=raw_audio, | |
media_type="application/octet-stream", | |
headers={ | |
"Content-Disposition": f'attachment; filename="output.pcm"', | |
"X-Sample-Rate": "24000", | |
"X-Bits-Per-Sample": "16", | |
"X-Endianness": "little" | |
} | |
) | |
return Response("No audio generated", status_code=400) |