from fastapi import FastAPI, UploadFile, HTTPException from fastapi.middleware.cors import CORSMiddleware from pydantic import BaseModel import PyPDF2 import openai import numpy as np import faiss import tiktoken from typing import List import io from dotenv import load_dotenv import os app = FastAPI() # Add CORS middleware app.add_middleware( CORSMiddleware, # allow_origins=["*"], # allow_origins=["https://jubilant-barnacle.vercel.app"], # allow_origins=["https://jubilant-barnacle-r95p.vercel.app", "http://localhost:3000"], allow_origins=["https://jubilant-barnacle-r95p.vercel.app", "http://localhost:3000", "*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) # In-memory storage class DocumentStore: def __init__(self): self.documents: List[str] = [] self.embeddings = None self.index = None def reset(self): self.documents = [] self.embeddings = None self.index = None doc_store = DocumentStore() class Question(BaseModel): text: str def get_embedding(text: str) -> List[float]: response = openai.embeddings.create( model="text-embedding-3-small", input=text ) return response.data[0].embedding def chunk_text(text: str, chunk_size: int = 1000) -> List[str]: words = text.split() chunks = [] current_chunk = [] current_size = 0 for word in words: current_chunk.append(word) current_size += len(word) + 1 if current_size >= chunk_size: chunks.append(" ".join(current_chunk)) current_chunk = [] current_size = 0 if current_chunk: chunks.append(" ".join(current_chunk)) return chunks @app.post("/upload") async def upload_pdf(file: UploadFile): if not file.filename.endswith('.pdf'): raise HTTPException(status_code=400, detail="File must be a PDF") try: # Reset the document store doc_store.reset() # Read PDF content content = await file.read() pdf_reader = PyPDF2.PdfReader(io.BytesIO(content)) text = "" for page in pdf_reader.pages: text += page.extract_text() # Chunk the text chunks = chunk_text(text) doc_store.documents = chunks # Create embeddings embeddings = [get_embedding(chunk) for chunk in chunks] doc_store.embeddings = np.array(embeddings, dtype=np.float32) # Create FAISS index dimension = len(embeddings[0]) doc_store.index = faiss.IndexFlatL2(dimension) doc_store.index.add(doc_store.embeddings) return {"message": "PDF processed successfully", "chunks": len(chunks)} except Exception as e: raise HTTPException(status_code=500, detail=str(e)) @app.post("/ask") async def ask_question(question: Question): if not doc_store.index: raise HTTPException( status_code=400, detail="No document has been uploaded yet") try: # Get question embedding question_embedding = get_embedding(question.text) # Search similar chunks k = 10 # Number of relevant chunks to retrieve D, I = doc_store.index.search( np.array([question_embedding], dtype=np.float32), k) # Get relevant chunks relevant_chunks = [doc_store.documents[i] for i in I[0]] print(relevant_chunks) # Create prompt prompt = f"""Based on the following context, please answer the question. If the answer cannot be found in the context, say "I cannot find the answer in the document." You may also use the context to infer information that is not explicitly stated in the context. For example, if the context does not explicitly state what the paper is about, you may infer that the paper is about the topic of the question or the retrieved context. Context: {' '.join(relevant_chunks)} Question: {question.text} """ # Get response from OpenAI response = openai.chat.completions.create( model="gpt-4o-mini", messages=[ {"role": "system", "content": "You are a helpful assistant that answers questions based on the provided context."}, {"role": "user", "content": prompt} ] ) return {"answer": response.choices[0].message.content} except Exception as e: raise HTTPException(status_code=500, detail=str(e)) # Configure OpenAI API key load_dotenv() openai.api_key = os.getenv("OPENAI_API_KEY") if __name__ == "__main__": import uvicorn uvicorn.run( "main:app", host="0.0.0.0", port=8000, reload=True, log_level="info", workers=1)