Spaces:
Running
Running
Sudeep s
commited on
Commit
•
62dc913
1
Parent(s):
273ecc2
changes to code
Browse files- app.py +82 -0
- examples/text-image-1.jpg +0 -0
- requirements.txt +5 -0
app.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import requests
|
3 |
+
import torch
|
4 |
+
from PIL import Image
|
5 |
+
import spaces
|
6 |
+
from transformers import MllamaForConditionalGeneration, AutoProcessor
|
7 |
+
import os
|
8 |
+
from huggingface_hub import login
|
9 |
+
|
10 |
+
#huggingface_token = os.getenv("SECRET_ENV_VARIABLE")
|
11 |
+
#login(huggingface_token)
|
12 |
+
|
13 |
+
# Load the Llama 3.2 Vision Model
|
14 |
+
def load_llama_model():
|
15 |
+
model_id = "meta-llama/Llama-3.2-11B-Vision"
|
16 |
+
|
17 |
+
# Load model and processor
|
18 |
+
model = MllamaForConditionalGeneration.from_pretrained(
|
19 |
+
model_id,
|
20 |
+
torch_dtype=torch.bfloat16,
|
21 |
+
device_map="auto",
|
22 |
+
offload_folder="offload",
|
23 |
+
)
|
24 |
+
model.tie_weights()
|
25 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
26 |
+
|
27 |
+
return model, processor
|
28 |
+
|
29 |
+
# Function to generate predictions for text and image
|
30 |
+
@spaces.GPU
|
31 |
+
def process_input(text, image=None):
|
32 |
+
model, processor = load_llama_model()
|
33 |
+
|
34 |
+
if image:
|
35 |
+
# If an image is uploaded, process it as a PIL Image object
|
36 |
+
vision_input = image.convert("RGB").resize((224, 224))
|
37 |
+
|
38 |
+
prompt = f"<|image|><|begin_of_text|>{text}"
|
39 |
+
|
40 |
+
# Process image and text together
|
41 |
+
inputs = processor(vision_input, prompt, return_tensors="pt").to(model.device)
|
42 |
+
else:
|
43 |
+
# If no image is uploaded, just process the text
|
44 |
+
prompt = f"<|begin_of_text|>{text}"
|
45 |
+
inputs = processor(prompt, return_tensors="pt").to(model.device)
|
46 |
+
|
47 |
+
# Generate output from the model
|
48 |
+
outputs = model.generate(**inputs, max_new_tokens=50)
|
49 |
+
|
50 |
+
# Decode the output to return a readable text
|
51 |
+
decoded_output = processor.decode(outputs[0], skip_special_tokens=True)
|
52 |
+
|
53 |
+
return decoded_output
|
54 |
+
|
55 |
+
def demo():
|
56 |
+
# Define Gradio input and output components
|
57 |
+
text_input = gr.Textbox(label="Text Input", placeholder="Enter text here", lines=5)
|
58 |
+
image_input = gr.Image(label="Upload an Image", type="pil")
|
59 |
+
output = gr.Textbox(label="Model Output", lines=3)
|
60 |
+
|
61 |
+
# Add two examples for multimodal analysis
|
62 |
+
examples = [
|
63 |
+
["The llama is ", "./examples/llama.png"],
|
64 |
+
["The cute hampster is wearing ", "./examples/hampster.png"]
|
65 |
+
]
|
66 |
+
|
67 |
+
# Define the interface layout
|
68 |
+
interface = gr.Interface(
|
69 |
+
fn=process_input,
|
70 |
+
inputs=[text_input, image_input],
|
71 |
+
outputs=output,
|
72 |
+
examples=examples,
|
73 |
+
title="Llama 3.2 Multimodal Text-Image Analyzer",
|
74 |
+
description="Upload an image and/or provide text for analysis using the Llama 3.2 Vision Model. You can also try out the provided examples.",
|
75 |
+
)
|
76 |
+
|
77 |
+
# Launch the demo
|
78 |
+
interface.launch()
|
79 |
+
|
80 |
+
# Run the demo
|
81 |
+
if __name__ == "__main__":
|
82 |
+
demo()
|
examples/text-image-1.jpg
ADDED
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
Pillow
|
3 |
+
spaces
|
4 |
+
git+https://github.com/huggingface/transformers.git
|
5 |
+
accelerate>=0.26.0
|