import gradio as gr import os from huggingface_hub import InferenceClient """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ model_name = "meta-llama/Llama-3.2-1B" huggingface_token = os.getenv("SECRET_ENV_VARIABLE") #client = InferenceClient(api_key=huggingface_token) client = InferenceClient(model=model_name, token=huggingface_token) def generate_text( prompt, system_message, max_tokens, temperature, top_p ): try: print(f"Attempting to generate text for prompt: {prompt[:50]}...") response = client.text_generation( prompt, max_new_tokens=max_tokens, temperature=temperature, top_k=50, top_p=top_p, do_sample=True ) print(f"Generated text: {response[:100]}...") return response except Exception as e: print(f"Error in generate_text: {type(e).__name__}: {str(e)}") return f"An error occurred: {type(e).__name__}: {str(e)}" with gr.Blocks() as demo: gr.Markdown("Q&A App") with gr.Tab("Q&A"): Query = gr.Textbox(label="Query") generate_button = gr.Button("Ask Query") output = gr.Textbox(label="Generated Answer", lines=10) generate_button.click(generate_text, #inputs=[industry, recipient_role, company_details], inputs=[ Query, gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], outputs=output) if __name__ == "__main__": demo.launch()