Spaces:
Sleeping
Sleeping
main api file
Browse files
main.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, File, UploadFile
|
2 |
+
from starlette.middleware.cors import CORSMiddleware
|
3 |
+
from PIL import Image
|
4 |
+
import tensorflow as tf
|
5 |
+
import numpy as np
|
6 |
+
import io
|
7 |
+
|
8 |
+
|
9 |
+
app = FastAPI()
|
10 |
+
# Enable CORS to allow cross-origin requests
|
11 |
+
app.add_middleware(
|
12 |
+
CORSMiddleware,
|
13 |
+
allow_origins=["*"],
|
14 |
+
allow_methods=["*"],
|
15 |
+
allow_headers=["*"],
|
16 |
+
)
|
17 |
+
|
18 |
+
# Load the Coffee Land Classifier model
|
19 |
+
model_path = "model/model.h5"
|
20 |
+
class_labels = ["Coffee Land", "Not Coffee Land"]
|
21 |
+
model = tf.keras.models.load_model(model_path, compile=False)
|
22 |
+
|
23 |
+
def preprocess_image(image):
|
24 |
+
# Resize and preprocess the image
|
25 |
+
img = image.resize((64, 64))
|
26 |
+
img = np.array(img)
|
27 |
+
img = img.astype('float32') / 255.0
|
28 |
+
img = np.expand_dims(img, axis=0)
|
29 |
+
return img
|
30 |
+
|
31 |
+
def predict_class(image):
|
32 |
+
img = preprocess_image(image)
|
33 |
+
predictions = model.predict(img)
|
34 |
+
class_index = np.argmax(predictions)
|
35 |
+
predicted_class = class_labels[class_index]
|
36 |
+
return predicted_class, predictions[0].tolist()
|
37 |
+
|
38 |
+
@app.post("/predict/")
|
39 |
+
async def predict(upload_file: UploadFile = File(...)):
|
40 |
+
file_contents = await upload_file.read() # Use upload_file, not request.file
|
41 |
+
print(f"Received file with size: {len(file_contents)} bytes")
|
42 |
+
image = Image.open(io.BytesIO(file_contents))
|
43 |
+
predicted_class, class_probabilities = predict_class(image)
|
44 |
+
return {"predicted_class": predicted_class, "class_probabilities": class_probabilities}
|
45 |
+
|
46 |
+
|