Spaces:
Runtime error
Runtime error
import streamlit as st | |
import re | |
from transformers import pipeline | |
import torch | |
# Load the text-to-text generation pipeline | |
pipe = pipeline("text2text-generation", model="samanjoy2/bnpunct_banglat5_seq2seq_finetuned", device='cpu') | |
def highlight_punctuation(text, punctuation_marks): | |
punctuation_pattern = '|'.join(map(re.escape, punctuation_marks)) | |
highlighted_text = re.sub(f'({punctuation_pattern})', r'<span style="color: green; font-weight: bold;">\1</span>', text) | |
return highlighted_text | |
st.title("Bangla Punctutation Restoration 🔨") | |
st.header("Input in Bengali text and get corrected output with proper punctuation marks [। , ?]") | |
# User input for text generation | |
input_text = st.text_area("Enter Bangla text for restoration:", max_chars=400) | |
if st.button("Restore Punctuations"): | |
if input_text: | |
# Remove the Punctuations if there are any | |
input_text = input_text.replace('।', '').replace(',', '').replace('?', '') | |
# Generate text using the pipeline | |
generated_text = pipe(input_text, max_length=512, batch_size=1)[0]['generated_text'] | |
generated_text = highlight_punctuation(generated_text, ["।", ",", "?"]) | |
# Display the generated text | |
st.subheader("Restored Text:") | |
st.write(generated_text, unsafe_allow_html=True) | |
else: | |
st.warning("Please enter text for restoration.") | |