sih / app.py
samiee2213's picture
Create app.py
98d9c7b verified
raw
history blame
19.2 kB
import streamlit as st
from streamlit_chat import message as st_message
from streamlit_option_menu import option_menu
import os
import plotly.express as px
from io import StringIO
from langchain.schema import HumanMessage, SystemMessage, AIMessage
from langchain.chat_models import AzureChatOpenAI, ChatOpenAI
from langchain.memory import ConversationBufferWindowMemory
from langchain.prompts import PromptTemplate
import warnings
import time
from sqlalchemy import create_engine, Column, Integer, String, Text, Table, MetaData
from sqlalchemy.orm import sessionmaker
import matplotlib.pyplot as plt
from langchain_groq import ChatGroq
import pandas as pd
import numpy as np
from dotenv import load_dotenv
import re
warnings.filterwarnings("ignore", category=DeprecationWarning)
load_dotenv()
os.environ['GROQ_API_KEY'] = os.getenv("GROQ_API_KEY")
llm = ChatGroq(model="llama-3.1-70b-versatile")
# Streamlit page configuration
st.set_page_config(
page_title="TraffiTrack",
page_icon="",
layout="wide",
initial_sidebar_state="expanded",
)
# Initialize session state for messages and banned users
if 'messages' not in st.session_state:
st.session_state.messages = [{"message": "Hi! How can I assist you today?", "is_user": False}]
if 'banned_users' not in st.session_state:
st.session_state.banned_users = []
if 'flowmessages' not in st.session_state:
st.session_state.flowmessages = []
# Function to handle registration
def registration():
st.title("User Registration")
# Ensure session state is initialized
if "user_data" not in st.session_state:
st.session_state.user_data = []
name = st.text_input("Enter your name")
phone_number = st.text_input("Enter your phone number")
if st.button("Register"):
if name and phone_number:
# Append user data to session state as a dictionary
st.session_state.user_data.append({"name": name, "phone_number": phone_number})
st.success("Registration successful!")
else:
st.warning("Please fill in all fields.")
# Function to simulate drug tracking data
def generate_sample_data():
data = {
"Drug Name": ["MDMA", "LSD", "Mephedrone", "Cocaine", "Heroin"],
"Detected Instances": [10, 15, 7, 12, 5],
"Flagged Users": [5, 10, 4, 7, 3],
"IP Addresses": [3, 8, 2, 6, 2]
}
return pd.DataFrame(data)
# Function to check for drug-related content and extract info
def check_for_drug_content(input_text):
drug_keywords = ["MDMA", "LSD", "Mephedrone", "Cocaine", "Heroin"]
pattern = r'(\+?\d{1,3}[-. ]?)?\(?\d{1,4}?\)?[-. ]?\d{1,4}[-. ]?\d{1,4}[-. ]?\d{1,9}' # Regex for phone numbers
ip_pattern = r'(?:(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.){3}(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)' # Regex for IP addresses
found_drugs = [keyword for keyword in drug_keywords if keyword.lower() in input_text.lower()]
phone_numbers = re.findall(pattern, input_text)
ip_addresses = re.findall(ip_pattern, input_text)
return found_drugs, phone_numbers, ip_addresses
# Sidebar with options
selected = option_menu(
"Main Menu",
["Home", "Registration","Chat"],
icons=['house', 'person','chat-dots'],
menu_icon="cast",
default_index=0,
orientation="horizontal",
styles={
"container": {"padding": "5px", "background-color": "#DEF9C4"},
"icon": {"color": "#468585", "font-size": "25px"},
"nav-link": {
"font-size": "16px",
"text-align": "left",
"margin": "0px",
"--hover-color": "#9CDBA6"
},
"nav-link-selected": {"background-color": "#50B498"},
}
)
# Function to get a response from the chat model
def get_chatmodel_response(user_message):
# Ensure user_message is a string
if "user_data" in st.session_state and st.session_state.user_data:
user_info = st.session_state.user_data[-1] # Get the most recent registered user
name = user_info.get("name", "Unknown")
phone_number = user_info.get("phone_number", "Unknown")
else:
name = "Unknown"
phone_number = "Unknown"
#better the prompt more formatting
#chat types -> human message
#response -> no drug message detected
#from registration
#remove debugging
PROMPT_TEMPLATE = """
You are an expert assistant specializing in detecting drug-related messages for monitoring illegal drug activities. Your role is to analyze user messages carefully to identify mentions of illegal substances or any activity related to drug trafficking, sales, or use. Your task is not just to detect specific drug names but to understand the context of the conversation, even if indirect or slang terms are used.
Key substances and related slang to focus on:
- MDMA (Molly, Mandy)
- LSD (Acid, Tabs)
- Mephedrone (Meow Meow)
- Cocaine (Coke, Snow, Blow, White, Charlie)
- Heroin (Smack, H, Brown)
- Marijuana (Weed, Pot, Mary Jane, Ganja, Bud)
- Ecstasy (X, XTC, E)
- Crack (Rock, Freebase)
Common phrases to consider:
- “Looking for Molly” (MDMA reference)
- “I need some snow” (Cocaine reference)
- “Got any tabs?” (LSD reference)
- “Can you hook me up with some blow?” (Cocaine reference)
- “I don’t want to mess with Charlie” (Cocaine reference in a negative context)
Instructions:
1. If you detect any mention of the above substances, slang, or any activities related to drug sales, trafficking, or use, respond with a simple confirmation of detection, including the drug name or slang term detected.
2. Be aware of **negations** or sentences where the user may **refuse** the drugs (e.g., "I don’t want cocaine"). Do not flag these as positive detections.
3. **Do not** include the original user message in your response.
4. Ensure the format includes the following fields: sender's name, phone number, and the detected drug word/slang. However, if there is **no drug-related content**, respond with only the message "drug word detected: none."
Below is the required format for your response:
If a drug word is detected:
{name}
{phone_number}
drug word detected: {{drug_word_detected}}
If no drug word is detected:
drug word detected: none
Below is the user message
User message: {user_message}
Response: """
memory = ConversationBufferWindowMemory(k=5, return_messages=True)
user_message = str(user_message)
# Use the parameter user_message to format the prompt
formatted_prompt = PROMPT_TEMPLATE.format(
user_message=user_message,
name=name,
phone_number=phone_number
)
# Add the formatted prompt to the conversation history
st.session_state.flowmessages.append(HumanMessage(content=user_message))
# Generate a response from the model
response = llm([SystemMessage(content=formatted_prompt)])
# Ensure the response.content is a string
response_content = str(response.content)
# Add the AI response to the conversation history
st.session_state.flowmessages.append(AIMessage(content=response_content))
# Save the conversation context
memory.save_context({"input": user_message}, {"output": response_content})
return response_content
# User input for query
# Button to send the message
# if st.button("Send"):
# if user_input:
# response = get_chatmodel_response(user_input)
# st.session_state.messages.append({"message": response, "is_user": False})
# st.experimental_rerun()
# else:
# st.warning("Please enter a message.")
# Display the conversation history
if "flowmessages" in st.session_state:
st.subheader("Chat")
for message in st.session_state.flowmessages:
if isinstance(message, HumanMessage):
st_message(message.content, is_user=True)
elif isinstance(message, AIMessage):
st_message(message.content, is_user=False)
def display_home_info():
# Set background color
st.markdown(
"""
<style>
.reportview-container {
background: #DEF9C4;
}
</style>
""",
unsafe_allow_html=True
)
# Title with emoji
st.title("🏠 Welcome to the Drug-Related Content Detector")
# Section for description
st.markdown(
"""
<div style='background-color: #50B498; padding: 10px; border-radius: 5px;'>
<h3 style='color: white;'>Our software solution helps identify drug-related content across multiple platforms.</h3>
</div>
""",
unsafe_allow_html=True
)
# Features list
st.write("### Features include:")
st.markdown(
"""
<ul style='list-style-type: none;'>
<li>🌐 Real-time monitoring of messages.</li>
<li>🖼️ Detection of images and text related to drug trafficking.</li>
<li>📊 Comprehensive statistics and insights.</li>
</ul>
""",
unsafe_allow_html=True
)
if selected == "Registration":
registration()
elif selected == "Home":
display_home_info()
elif selected == "Chat":
def traffitrack_chatbot():
st.title('TraffiTrack 💬')
# Dropdown to select platform
platform = st.selectbox(
"Choose a platform",
["Live 💁‍♀️", "WhatsApp 📱", "Instagram 📸", "Telegram ✉️"],
index=0
)
if platform == "Telegram ✉️":
# Hardcoded CSV content
csv_content = """sender_name,sender_id,phone_number,message_text
Shruti,1580593004,917304814120,But I would prefer blowing a bag of Charlie
Shruti,1580593004,917304814120,I want to eat ice cream i am bored
Shruti,1580593004,917304814120,He’s heavily into smack
Shruti,1580593004,917304814120,There was a bag of snow in the car
Shruti,1580593004,917304814120,Did you bring the Mary Jane for the party tonight?
Shruti,1580593004,917304814120,Mary Jane
Ritika,1065437474,918828000465,I WANT A BAG OF CHARLIE
Ritika,1065437474,918828000465,Okayy
Preeyaj,6649015430,,Haa bhej cocain thoda
Ritika,1065437474,918828000465,Maal chahiye?
Preeyaj,6649015430,,Llm
Ritika,1065437474,918828000465,Kya kar rahe ho?
Ritika,1065437474,918828000465,Hey"""
# Read the CSV content into a DataFrame
messages_df = pd.read_csv(StringIO(csv_content))
# Reverse the DataFrame to display messages from first to last
for idx, row in messages_df[::-1].iterrows(): # Reverse the DataFrame here
sender_name = row['sender_name']
message_text = row['message_text']
# Display each message with its corresponding sender name
st_message(f"{sender_name}: {message_text}", is_user=False, key=f"telegram_message_{idx}")
if st.button("Analyze 🚨"):
# Initialize count and list for drug-related messages
drug_count = 0 # Initialize drug_count here
drug_messages = []
user_data = {} # Initialize user data dictionary
# Analyze each message for drug-related content
for idx, row in messages_df.iterrows():
message_text = row['message_text']
sender_name = row['sender_name']
sender_id = row['sender_id']
phone_number = row['phone_number']
# Get response from the chat model
response_content = get_chatmodel_response(message_text)
# Check for drug word detected in the response
if "drug word detected" in response_content and "none" not in response_content:
drug_word = response_content.split("drug word detected: ")[1].strip()
drug_count += 1
drug_messages.append({
"sender_name": sender_name,
"sender_id": sender_id,
"phone_number": phone_number,
"message_text": message_text,
"drug_word": drug_word
})
# Aggregate data by user
if sender_name not in user_data:
user_data[sender_name] = {
"phone_number": phone_number,
"message_count": 0,
"drug_words": []
}
user_data[sender_name]["message_count"] += 1
user_data[sender_name]["drug_words"].append(drug_word)
# Display statistics
st.subheader("Analysis Results 📊")
st.write(f"Total drug-related messages detected: {drug_count}")
if drug_count > 0:
# st.write("Details of detected messages:")
# for message in drug_messages:
# st.markdown(f"**Phone Number**: {message['phone_number']} \
# **Sender ID**: {message['sender_id']} \
# **Message**: {message['message_text']} \
# **Drug Detected**: {message['drug_word']}")
# Prepare data for visualization
user_names = list(user_data.keys())
message_counts = [data["message_count"] for data in user_data.values()]
phone_numbers = [data["phone_number"] for data in user_data.values()]
# 1. Bar chart: Messages per user
st.markdown("### Number of Messages per User 📊")
fig = px.bar(
x=user_names,
y=message_counts,
labels={'x': 'User Name', 'y': 'Message Count'},
title="Messages Detected per User"
)
st.plotly_chart(fig)
# 2. Pie chart: Distribution of drug-related messages
st.markdown("### Drug Distribution Among Users 🍰")
drugs_detected = [drug for user in user_data.values() for drug in user["drug_words"]]
fig = px.pie(
names=drugs_detected,
title="Distribution of Detected Drugs"
)
st.plotly_chart(fig)
# 3. Horizontal bar chart: Number of drug-related messages per user
st.markdown("### Drug-related Messages per User 📊")
fig = px.bar(
y=user_names,
x=message_counts,
orientation='h',
labels={'y': 'User Name', 'x': 'Drug-related Messages Count'},
title="Drug-related Messages per User"
)
st.plotly_chart(fig)
# 4. Display user details in a table
st.markdown("### User Details Table 📋")
user_df = pd.DataFrame({
"User Name": user_names,
"Phone Number": phone_numbers,
"Message_id" : sender_id,
"Messages Detected": message_counts
})
st.dataframe(user_df)
# Optionally: Link to the statistics page
st.markdown("[View Statistics Page](#)")
else:
st.write("No drug-related messages detected.")
else:
# Display chat messages for other platforms with unique keys
for idx, msg in enumerate(st.session_state.messages):
st_message(msg["message"], is_user=msg["is_user"], key=f"message_{idx}")
# Input for user query
input_text = st.text_input("Enter your text", key="user_input")
if st.button("Send"):
if input_text:
# Append the user's message to session state
st.session_state.messages.append({"message": input_text, "is_user": True})
# Get the response from the model
response = get_chatmodel_response(input_text)
# Append the response from the model
st.session_state.messages.append({"message": response, "is_user": False})
# Rerun to refresh the UI with new messages
st.experimental_rerun()
else:
st.warning("Please enter a message.")
# Call the chatbot function
traffitrack_chatbot()
# elif selected == "Statistics":
# st.title('Drug Trafficking Statistics 📊')
# # Generate sample data
# data = generate_sample_data()
# # Display data
# st.subheader("Overview of Detected Drugs")
# st.dataframe(data)
# # Plotting the data
# st.subheader("Detected Instances of Drugs")
# fig, ax = plt.subplots(figsize=(8, 5))
# ax.bar(data["Drug Name"], data["Detected Instances"], color="#50B498")
# plt.title("Detected Instances of Drugs")
# plt.xlabel("Drug Name")
# plt.ylabel("Detected Instances")
# st.pyplot(fig)
# # Plotting flagged users
# st.subheader("Flagged Users")
# fig, ax = plt.subplots(figsize=(8, 5))
# ax.bar(data["Drug Name"], data["Flagged Users"], color="#468585")
# plt.title("Flagged Users")
# plt.xlabel("Drug Name")
# plt.ylabel("Flagged Users")
# st.pyplot(fig)
# # Plotting IP addresses
# st.subheader("Detected IP Addresses")
# fig, ax = plt.subplots(figsize=(8, 5))
# ax.bar(data["Drug Name"], data["IP Addresses"], color="#9CDBA6")
# plt.title("Detected IP Addresses")
# plt.xlabel("Drug Name")
# plt.ylabel("Detected IP Addresses")
# st.pyplot(fig)
# Custom CSS for a better user interface
st.markdown(f"""
<style>
.stApp {{
background-color: #DEF9C4;
color: #468585;
}}
.stButton>button {{
background-color: #50B498;
color: #ffffff;
border: none;
border-radius: 8px;
font-size: 16px;
padding: 10px 20px;
cursor: pointer;
}}
.stButton>button:hover {{
background-color: #9CDBA6;
}}
.stTextInput>input {{
background-color: #468585;
color: #ffffff;
border: 2px solid #50B498;
border-radius: 8px;
padding: 10px;
font-size: 16px;
}}
h1, h2, h3 {{
color: #50B498;
}}
.stDataFrame {{
background-color: #ffffff;
color: #000000;
border-radius: 10px;
padding: 10px;
}}
</style>
""", unsafe_allow_html=True)