rag_upload / app.py
samsonleegh's picture
Update app.py
f130ba6 verified
import os
from dotenv import load_dotenv
from gradio.components import upload_button
from llama_index.llms.groq import Groq
from llama_index.llms.openai import OpenAI
from llama_index.core import Settings
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.core.node_parser import SentenceSplitter
from llama_parse import LlamaParse
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Settings
from llama_index.core.retrievers import VectorIndexRetriever
from llama_index.core import get_response_synthesizer
from llama_index.core.query_engine import RetrieverQueryEngine
from llama_index.core.postprocessor import SimilarityPostprocessor
#from llama_index.embeddings.huggingface import HuggingFaceEmbedding
import gradio as gr
import shutil
load_dotenv()
OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
#GROQ_API_KEY = os.getenv('GROQ_API_KEY')
LLAMAINDEX_API_KEY = os.getenv('LLAMAINDEX_API_KEY')
# llm = Groq(model="llama-3.1-70b-versatile", api_key=GROQ_API_KEY)
llm = OpenAI(model="gpt-4o-mini",api_key = OPENAI_API_KEY)
# response = llm.complete("Explain the importance of low latency LLMs")
# response.text
Settings.llm = llm
# set up embedding model
# embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5")
embed_model = OpenAIEmbedding()
Settings.embed_model = embed_model
# create splitter
splitter = SentenceSplitter(chunk_size=10000, chunk_overlap=100)
Settings.transformations = [splitter]
def upload_file(file_ls):
try:
shutil.rmtree('./data')
except:
pass
UPLOAD_FOLDER = './data'
if not os.path.exists(UPLOAD_FOLDER):
os.mkdir(UPLOAD_FOLDER)
for file in file_ls:
shutil.copy(file, UPLOAD_FOLDER)
gr.Info("File uploaded")
def process_documents():
# create parser
parser = LlamaParse(
api_key=LLAMAINDEX_API_KEY,
result_type="markdown", # "markdown" and "text" are available
verbose=True,
)
filename_fn = lambda filename: {"file_name": filename}
required_exts = [".pdf",".docx"]
file_extractor = {".pdf": parser}
reader = SimpleDirectoryReader(
input_dir="./data",
file_extractor=file_extractor,
required_exts=required_exts,
recursive=True,
file_metadata=filename_fn
)
documents = reader.load_data()
len_docs = len(documents)
print("index creating with `%d` documents", len(documents))
global index
index = VectorStoreIndex.from_documents(documents, embed_model=embed_model, transformations=[splitter])
index.storage_context.persist(persist_dir="./vectordb")
return f"Processed {len_docs} documents successfully.{len_docs}"
def query_index(query_input):
# set up retriever
retriever = VectorIndexRetriever(
index=index,
similarity_top_k = 15,
#vector_store_query_mode="mmr",
#vector_store_kwargs={"mmr_threshold": 0.4}
)
# set up response synthesizer
# response_synthesizer = get_response_synthesizer()
# setting up query engine
query_engine = RetrieverQueryEngine(
retriever = retriever,
node_postprocessors=[SimilarityPostprocessor(similarity_cutoff=0.53)],
response_synthesizer=get_response_synthesizer(response_mode="tree_summarize",verbose=True)
)
# print(query_engine.get_prompts())
output = query_engine.query(query_input)
return output.response
# source_nodes_list = output.source_nodes
# Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# RAG with Llamaindex")
upload_button = gr.UploadButton("Click to upload a file", file_count="multiple")
upload_button.upload(upload_file, upload_button)
# File upload interface
# with gr.Row():
# docs = gr.Files(label="Upload Documents", file_types=[".txt", ".pdf"])
# Process button
process_button = gr.Button("Process Documents")
# Output for document processing
process_output = gr.Textbox(label="Processing Output")
# Query interface
query_input = gr.Textbox(label="Enter your query")
query_button = gr.Button("Submit Query")
query_output = gr.Textbox(label="Response")
# Create Gradio interface for document upload
# upload_interface = gr.Interface(
# fn=process_documents,
# inputs=gr.inputs.File(file_count="multiple"),
# outputs="text",
# title="Upload Documents",
# description="Upload text files to index them for querying."
# )
# # Linking the processing function
process_button.click(fn=process_documents, inputs=None, outputs=process_output)
# Linking the query function
query_button.click(fn=query_index, inputs=query_input, outputs=query_output)
# Run the interface
if __name__ == "__main__":
demo.launch()