import os import gradio as gr from dotenv import load_dotenv from llama_index.core.callbacks import CallbackManager, LlamaDebugHandler, CBEventType from llama_index.core.node_parser import SentenceSplitter from llama_index.core.postprocessor import SimilarityPostprocessor from llama_index.llms.openai import OpenAI from llama_index.llms.groq import Groq from llama_index.core.base.embeddings.base import similarity from llama_index.llms.ollama import Ollama from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Settings from llama_index.core import StorageContext from llama_index.vector_stores.chroma import ChromaVectorStore from llama_index.embeddings.huggingface import HuggingFaceEmbedding from llama_index.core import load_index_from_storage load_dotenv() # set up LLM GROQ_API_KEY = os.getenv('GROQ_API_KEY') llm = Groq(model="llama3-70b-8192") Settings.llm = llm # set up callback manager llama_debug = LlamaDebugHandler(print_trace_on_end=True) callback_manager = CallbackManager([llama_debug]) Settings.callback_manager = callback_manager # converting documents into embeddings and indexing embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5") Settings.embed_model = embed_model # create splitter splitter = SentenceSplitter(chunk_size=1024, chunk_overlap=20) Settings.transformations = [splitter] if os.path.exists("./vectordb"): storage_context = StorageContext.from_defaults(persist_dir="./vectordb") index = load_index_from_storage(storage_context) else: filename_fn = lambda filename: {"file_name": filename} required_exts = [".pdf",".docx"] reader = SimpleDirectoryReader( input_dir="./data", required_exts=required_exts, recursive=True, file_metadata=filename_fn ) documents = reader.load_data() for doc in documents: doc.text = str(doc.metadata) +' '+ doc.text print("index creating with `%d` documents", len(documents)) index = VectorStoreIndex.from_documents(documents, embed_model=embed_model, text_splitter=splitter) index.storage_context.persist(persist_dir="./vectordb") # set up query engine query_engine = index.as_query_engine( similarity_top_k=5, #node_postprocessors=[SimilarityPostprocessor(similarity_cutoff=0.7)], verbose=True, ) def retreive(question): qns_w_source = "Answer the following question: " + question + " Followed by providing the page and file name of the source document as well, thank you!" streaming_response = query_engine.query(qns_w_source) #sources = streaming_response.get_formatted_sources(length=5000) return str(streaming_response) # + "\n" + str(sources) demo = gr.Interface(fn=retreive, inputs="textbox", outputs="textbox") if __name__ == "__main__": demo.launch()