Spaces:
Sleeping
Sleeping
samsonleegh
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from llama_index.core.base.embeddings.base import similarity
|
2 |
+
from llama_index.llms.ollama import Ollama
|
3 |
+
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Settings
|
4 |
+
from llama_index.core import StorageContext
|
5 |
+
from llama_index.vector_stores.chroma import ChromaVectorStore
|
6 |
+
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
7 |
+
from llama_index.core import load_index_from_storage
|
8 |
+
import os
|
9 |
+
from dotenv import load_dotenv
|
10 |
+
from llama_index.core.callbacks import CallbackManager, LlamaDebugHandler, CBEventType
|
11 |
+
from llama_index.core.node_parser import SentenceSplitter
|
12 |
+
from llama_index.core.postprocessor import SimilarityPostprocessor
|
13 |
+
from llama_index.llms.openai import OpenAI
|
14 |
+
from llama_index.llms.groq import Groq
|
15 |
+
from llama_parse import LlamaParse
|
16 |
+
from llama_index.core.indices.query.query_transform.base import HyDEQueryTransform
|
17 |
+
from llama_index.core.query_engine import TransformQueryEnginef
|
18 |
+
from llama_index.core.extractors import (
|
19 |
+
SummaryExtractor,
|
20 |
+
QuestionsAnsweredExtractor,
|
21 |
+
)
|
22 |
+
from llama_index.core.schema import MetadataMode
|
23 |
+
from llama_index.core.ingestion import IngestionPipeline
|
24 |
+
|
25 |
+
load_dotenv()
|
26 |
+
# OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
|
27 |
+
GROQ_API_KEY = os.getenv('GROQ_API_KEY')
|
28 |
+
LLAMAINDEX_API_KEY = os.getenv('LLAMAINDEX_API_KEY')
|
29 |
+
|
30 |
+
llm = Groq(model="llama3-70b-8192")#"llama3-8b-8192")
|
31 |
+
Settings.llm = llm
|
32 |
+
|
33 |
+
# set up callback manager
|
34 |
+
llama_debug = LlamaDebugHandler(print_trace_on_end=True)
|
35 |
+
callback_manager = CallbackManager([llama_debug])
|
36 |
+
Settings.callback_manager = callback_manager
|
37 |
+
|
38 |
+
# converting documents into embeddings and indexing
|
39 |
+
embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5")
|
40 |
+
Settings.embed_model = embed_model
|
41 |
+
|
42 |
+
# create splitter
|
43 |
+
splitter = SentenceSplitter(chunk_size=1024, chunk_overlap=20)
|
44 |
+
Settings.transformations = [splitter]
|
45 |
+
|
46 |
+
if os.path.exists("./vectordb"):
|
47 |
+
storage_context = StorageContext.from_defaults(persist_dir="./vectordb")
|
48 |
+
index = load_index_from_storage(storage_context)
|
49 |
+
else:
|
50 |
+
parser = LlamaParse(
|
51 |
+
api_key=LLAMAINDEX_API_KEY,
|
52 |
+
result_type="markdown", # "markdown" and "text" are available
|
53 |
+
verbose=True,
|
54 |
+
)
|
55 |
+
filename_fn = lambda filename: {"file_name": filename}
|
56 |
+
required_exts = [".pdf",".docx"]
|
57 |
+
file_extractor = {".pdf": parser}
|
58 |
+
reader = SimpleDirectoryReader(
|
59 |
+
"./data",
|
60 |
+
file_extractor=file_extractor,
|
61 |
+
required_exts=required_exts,
|
62 |
+
recursive=True,
|
63 |
+
file_metadata=filename_fn
|
64 |
+
)
|
65 |
+
documents = reader.load_data()
|
66 |
+
for doc in documents:
|
67 |
+
doc.text = str(doc.metadata) +' '+ doc.text
|
68 |
+
print("index creating with `%d` documents", len(documents))
|
69 |
+
# index = VectorStoreIndex.from_documents(documents, embed_model=embed_model, text_splitter=splitter)
|
70 |
+
extractor_llm = Groq(model="llama3-70b-8192", temperature=0.1, max_tokens=512) #OpenAI(temperature=0.1, model="gpt-3.5-turbo", max_tokens=512)
|
71 |
+
|
72 |
+
node_parser = SentenceSplitter(chunk_size=512, chunk_overlap=20)
|
73 |
+
extractors = [
|
74 |
+
SummaryExtractor(summaries=["prev", "self", "next"], llm=extractor_llm),
|
75 |
+
QuestionsAnsweredExtractor(
|
76 |
+
questions=3, llm=extractor_llm, metadata_mode=MetadataMode.EMBED
|
77 |
+
),
|
78 |
+
]
|
79 |
+
nodes = node_parser.get_nodes_from_documents(documents)
|
80 |
+
nodes_extract_ls = []
|
81 |
+
print('extracting from:', len(nodes), ' nodes.')
|
82 |
+
import time
|
83 |
+
batch_size=5
|
84 |
+
for i in range(0, len(nodes), batch_size):
|
85 |
+
print(i)
|
86 |
+
nodes_batch_raw = nodes[i:i+batch_size]
|
87 |
+
try:
|
88 |
+
pipeline = IngestionPipeline(transformations=[node_parser, *extractors])
|
89 |
+
nodes_batch = pipeline.run(nodes=nodes_batch_raw, in_place=False, show_progress=True)
|
90 |
+
nodes_extract_ls.append(nodes_batch)
|
91 |
+
except:
|
92 |
+
time.sleep(30) # api call limit reach, sleep 30 seconds before trying
|
93 |
+
nodes_extract = [
|
94 |
+
x
|
95 |
+
for xs in nodes_extract_ls
|
96 |
+
for x in xs
|
97 |
+
]
|
98 |
+
index = VectorStoreIndex(nodes_extract)
|
99 |
+
|
100 |
+
index.storage_context.persist(persist_dir="./vectordb")
|
101 |
+
|
102 |
+
|
103 |
+
query_engine = index.as_query_engine(
|
104 |
+
similarity_top_k=5,
|
105 |
+
#node_postprocessors=[SimilarityPostprocessor(similarity_cutoff=0.7)],
|
106 |
+
verbose=True,
|
107 |
+
)
|
108 |
+
|
109 |
+
# query_engine = index.as_query_engine(
|
110 |
+
# similarity_top_k=10,
|
111 |
+
# #node_postprocessors=[SimilarityPostprocessor(similarity_cutoff=0.7)],
|
112 |
+
# verbose=True,
|
113 |
+
# )
|
114 |
+
|
115 |
+
# # hyde: transform query into a temporary doc, and use doc to doc similarity match
|
116 |
+
# hyde = HyDEQueryTransform(include_original=True)
|
117 |
+
# hyde_query_engine = TransformQueryEngine(query_engine, query_transform=hyde)
|
118 |
+
|
119 |
+
import gradio as gr
|
120 |
+
|
121 |
+
def retreive(question):
|
122 |
+
qns_w_source = "Answer the following question: " + question + " Followed by providing the page and file name of the source document as well, thank you!"
|
123 |
+
streaming_response = query_engine.query(qns_w_source)
|
124 |
+
# sources = streaming_response.get_formatted_sources(length=5000)
|
125 |
+
return str(streaming_response) #+ "\n" + str(sources)
|
126 |
+
|
127 |
+
demo = gr.Interface(fn=retreive, inputs="textbox", outputs="textbox")
|
128 |
+
|
129 |
+
demo.launch(share=True) # Share your demo with just 1 extra parameter 🚀
|