Spaces:
Sleeping
Sleeping
File size: 1,687 Bytes
fa97029 3dce9ee eda1383 fa97029 eda1383 fa97029 eda1383 fa97029 233b050 eda1383 fa97029 eda1383 fa97029 64f07e3 eda1383 fa97029 eda1383 fa97029 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
import gradio as gr
from huggingface_hub import InferenceClient
import asyncio
# Use a smaller model
client = InferenceClient("distilgpt2")
async def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
# Construct the prompt from history and current message
prompt = system_message + "\n\n"
for user_msg, bot_msg in history:
prompt += f"Human: {user_msg}\nAI: {bot_msg}\n"
prompt += f"Human: {message}\nAI:"
try:
# Generate response with a timeout
response = await asyncio.wait_for(
client.text_generation(
prompt,
max_new_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
do_sample=True,
),
timeout=10 # 10 seconds timeout
)
# Extract only the AI's response
ai_response = response.split("AI:")[-1].strip()
return ai_response
except asyncio.TimeoutError:
return "I'm sorry, but I'm having trouble generating a response right now. Could you try again?"
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a helpful AI assistant.", label="System message"),
gr.Slider(minimum=1, maximum=100, value=50, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.9,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
demo.launch() |