import gradio as gr from huggingface_hub import InferenceClient import threading import time # Use a smaller model client = InferenceClient("distilgpt2") def generate_with_timeout(prompt, max_new_tokens, temperature, top_p, timeout=10): result = [] def target(): try: response = client.text_generation( prompt, max_new_tokens=max_new_tokens, temperature=temperature, top_p=top_p, do_sample=True, ) result.append(response) except Exception as e: result.append(str(e)) thread = threading.Thread(target=target) thread.start() thread.join(timeout) if thread.is_alive(): return "I'm sorry, but I'm having trouble generating a response right now. Could you try again?" elif result: return result[0] else: return "An error occurred while generating the response." def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): # Construct the prompt from history and current message prompt = system_message + "\n\n" for user_msg, bot_msg in history: prompt += f"Human: {user_msg}\nAI: {bot_msg}\n" prompt += f"Human: {message}\nAI:" response = generate_with_timeout(prompt, max_tokens, temperature, top_p) # Extract only the AI's response ai_response = response.split("AI:")[-1].strip() return ai_response demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a helpful AI assistant.", label="System message"), gr.Slider(minimum=1, maximum=100, value=50, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()