sanaweb's picture
Update app.py
f8d903d verified
raw
history blame
6.76 kB
import os
from threading import Thread
from typing import Iterator
import gradio as gr
from langfuse import Langfuse
from langfuse.decorators import observe
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import time
MAX_MAX_NEW_TOKENS = 1048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "1096"))
DESCRIPTION = """\
# models/PartAI/Dorna-Llama3-8B-Instruct
"""
PLACEHOLDER = """
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
<img src="https://avatars.githubusercontent.com/u/39557177?v=4" style="width: 80%; max-width: 550px; height: auto; opacity: 0.80; ">
<h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">Dorna-Llama3-8B-Instruct</h1>
</div>
"""
custom_css = """
@import url('https://fonts.googleapis.com/css2?family=Vazirmatn&display=swap');
body, .gradio-container, .gr-button, .gr-input, .gr-slider, .gr-dropdown, .gr-markdown {
font-family: 'Vazirmatn', sans-serif !important;
}
._button {
font-size: 20px;
}
pre, code {
direction: ltr !important;
unicode-bidi: plaintext !important;
}
"""
system_prompt = str(os.getenv("SYSTEM_PROMPT"))
secret_key = str(os.getenv("LANGFUSE_SECRET_KEY"))
public_key = str(os.getenv("LANGFUSE_PUBLIC_KEY"))
host = str(os.getenv("LANGFUSE_HOST"))
langfuse = Langfuse(
secret_key=secret_key,
public_key=public_key,
host=host
)
def execution_time_calculator(start_time, log=True):
delta = time.time() - start_time
if log:
print("--- %s seconds ---" % (delta))
return delta
def token_per_second_calculator(tokens_count, time_delta):
return tokens_count/time_delta
if not torch.cuda.is_available():
DESCRIPTION = "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
if torch.cuda.is_available():
model_id = "https://huggingface.co/PartAI/Dorna-Llama3-8B-Instruct"
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype=torch.bfloat16)
tokenizer = AutoTokenizer.from_pretrained(model_id)
generation_speed = 0
def get_generation_speed():
global generation_speed
return generation_speed
@observe()
def log_to_langfuse(message, chat_history, max_new_tokens, temperature, top_p, top_k, repetition_penalty, do_sample, generation_speed, model_outputs):
print(f"generation_speed: {generation_speed}")
return "".join(model_outputs)
@spaces.GPU
def generate(
message: str,
chat_history: list[tuple[str, str]],
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2,
do_sample: bool =True,
) -> Iterator[str]:
global generation_speed
global system_prompt
conversation = []
if system_prompt:
conversation.append({"role": "system", "content": system_prompt})
for user, assistant in chat_history:
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
{"input_ids": input_ids},
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=do_sample,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_beams=1,
repetition_penalty=repetition_penalty,
)
start_time = time.time()
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
sum_tokens = 0
for text in streamer:
num_tokens = len(tokenizer.tokenize(text))
sum_tokens += num_tokens
outputs.append(text)
yield "".join(outputs)
time_delta = execution_time_calculator(start_time, log=False)
generation_speed = token_per_second_calculator(sum_tokens, time_delta)
log_function = log_to_langfuse(
message=message,
chat_history=chat_history,
max_new_tokens=max_new_tokens,
temperature=temperature,
top_p=top_p,
top_k=top_k,
repetition_penalty=repetition_penalty,
do_sample=do_sample,
generation_speed=generation_speed,
model_outputs=outputs,
)
chatbot = gr.Chatbot(placeholder=PLACEHOLDER, scale=1, show_copy_button=True, height="68%", rtl=True) #, elem_classes=["chatbot"])
chat_input = gr.Textbox(show_label=False, lines=2, rtl=True, placeholder="ورودی", show_copy_button=True, scale=4)
submit_btn = gr.Button(variant="primary", value="ارسال", size="sm", scale=1, elem_classes=["_button"])
chat_interface = gr.ChatInterface(
fn=generate,
additional_inputs_accordion=gr.Accordion(label="ورودی‌های اضافی", open=False),
additional_inputs=[
gr.Slider(
label="حداکثر تعداد توکن ها",
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
),
gr.Slider(
label="Temperature",
minimum=0.01,
maximum=4.0,
step=0.01,
value=0.5,
),
gr.Slider(
label="Top-p",
minimum=0.05,
maximum=1.0,
step=0.01,
value=0.9,
),
gr.Slider(
label="Top-k",
minimum=1,
maximum=1000,
step=1,
value=20,
),
gr.Slider(
label="جریمه تکرار",
minimum=1.0,
maximum=2.0,
step=0.05,
value=1.2,
),
gr.Dropdown(
label="نمونه‌گیری",
choices=[False, True],
value=True)
],
stop_btn="توقف",
chatbot=chatbot,
textbox=chat_input,
submit_btn=submit_btn,
retry_btn="🔄 تلاش مجدد",
undo_btn="↩️ بازگشت",
clear_btn="🗑️ پاک کردن",
title="درنا، محصول مرکز تحقیقات هوش مصنوعی پارت"
)
with gr.Blocks(css=custom_css, fill_height=False) as demo:
gr.Markdown(DESCRIPTION)
chat_interface.render()
if __name__ == "__main__":
demo.queue(max_size=20).launch()