import asyncio import logging import torch import gradio as gr from fastapi import FastAPI, HTTPException from fastapi.middleware.cors import CORSMiddleware from pydantic import BaseModel from typing import List, Dict from functools import lru_cache import numpy as np from threading import Lock import uvicorn class EmbeddingRequest(BaseModel): input: str model: str = "jinaai/jina-embeddings-v3" class EmbeddingResponse(BaseModel): status: str embeddings: List[List[float]] class EmbeddingService: def __init__(self): self.model_name = "jinaai/jina-embeddings-v3" self.max_length = 512 self.device = torch.device("cpu") self.model = None self.tokenizer = None self.lock = Lock() self.setup_logging() torch.set_num_threads(4) # CPU优化 def setup_logging(self): logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s' ) self.logger = logging.getLogger(__name__) async def initialize(self): try: from transformers import AutoTokenizer, AutoModel self.tokenizer = AutoTokenizer.from_pretrained( self.model_name, trust_remote_code=True ) self.model = AutoModel.from_pretrained( self.model_name, trust_remote_code=True ).to(self.device) self.model.eval() torch.set_grad_enabled(False) self.logger.info(f"模型加载成功,使用设备: {self.device}") except Exception as e: self.logger.error(f"模型初始化失败: {str(e)}") raise @lru_cache(maxsize=1000) def get_embedding(self, text: str) -> List[float]: """同步生成嵌入向量,带缓存""" with self.lock: try: inputs = self.tokenizer( text, return_tensors="pt", truncation=True, max_length=self.max_length, padding=True ) with torch.no_grad(): outputs = self.model(**inputs).last_hidden_state.mean(dim=1) return outputs.numpy().tolist()[0] except Exception as e: self.logger.error(f"生成嵌入向量失败: {str(e)}") raise embedding_service = EmbeddingService() app = FastAPI() app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) @app.post("/generate_embeddings", response_model=EmbeddingResponse) @app.post("/api/v1/embeddings", response_model=EmbeddingResponse) @app.post("/hf/v1/embeddings", response_model=EmbeddingResponse) @app.post("/api/v1/chat/completions", response_model=EmbeddingResponse) @app.post("/hf/v1/chat/completions", response_model=EmbeddingResponse) async def generate_embeddings(request: EmbeddingRequest): try: # 使用run_in_executor避免事件循环问题 embedding = await asyncio.get_running_loop().run_in_executor( None, embedding_service.get_embedding, request.input ) return EmbeddingResponse( status="success", embeddings=[embedding] ) except Exception as e: raise HTTPException(status_code=500, detail=str(e)) @app.get("/") async def root(): return { "status": "active", "model": embedding_service.model_name, "device": str(embedding_service.device) } def gradio_interface(text: str) -> Dict: try: embedding = embedding_service.get_embedding(text) return { "status": "success", "embeddings": [embedding] } except Exception as e: return { "status": "error", "message": str(e) } iface = gr.Interface( fn=gradio_interface, inputs=gr.Textbox(lines=3, label="输入文本"), outputs=gr.JSON(label="嵌入向量结果"), title="Jina Embeddings V3", description="使用jina-embeddings-v3模型生成文本嵌入向量", examples=[["这是一个测试句子。"]] ) @app.on_event("startup") async def startup_event(): await embedding_service.initialize() if __name__ == "__main__": asyncio.run(embedding_service.initialize()) gr.mount_gradio_app(app, iface, path="/ui") uvicorn.run(app, host="0.0.0.0", port=7860, workers=1)