Spaces:
Running
on
TPU v5e
Running
on
TPU v5e
import logging | |
import math | |
import os | |
import tempfile | |
import time | |
import gradio as gr | |
import jax.numpy as jnp | |
import numpy as np | |
import yt_dlp as youtube_dl | |
from jax.experimental.compilation_cache import compilation_cache as cc | |
from transformers.models.whisper.tokenization_whisper import TO_LANGUAGE_CODE | |
from transformers.pipelines.audio_utils import ffmpeg_read | |
from whisper_jax import FlaxWhisperPipline | |
cc.initialize_cache("./jax_cache") | |
checkpoint = "openai/whisper-large-v3" | |
BATCH_SIZE = 32 | |
CHUNK_LENGTH_S = 30 | |
NUM_PROC = 32 | |
FILE_LIMIT_MB = 1000 | |
YT_LENGTH_LIMIT_S = 7200 # limit to 2 hour YouTube files | |
title = "Whisper JAX: The Fastest Whisper API ⚡️" | |
description = """Whisper JAX is an optimised implementation of the [Whisper model](https://huggingface.co/openai/whisper-large-v3) by OpenAI. This demo is running on JAX with a TPU v5e backend. Compared to PyTorch on an A100 GPU, it is over [**70x faster**](https://github.com/sanchit-gandhi/whisper-jax#benchmarks), making it the fastest Whisper API available. | |
Note that at peak times, you may find yourself in the queue for this demo. When you submit a request, your queue position will be shown in the top right-hand side of the demo pane. Once you reach the front of the queue, your audio file will be transcribed, with the progress displayed through a progress bar. | |
To skip the queue, you may wish to create your own inference endpoint by duplicating the demo, details for which can be found in the [Whisper JAX repository](https://github.com/sanchit-gandhi/whisper-jax#creating-an-endpoint). | |
""" | |
article = "Whisper large-v3 model by OpenAI. Backend running JAX on a TPU v5e directly through Hugging Face Spaces. Whisper JAX [code](https://github.com/sanchit-gandhi/whisper-jax) and Gradio demo by 🤗 Hugging Face." | |
language_names = sorted(TO_LANGUAGE_CODE.keys()) | |
logger = logging.getLogger("whisper-jax-app") | |
logger.setLevel(logging.INFO) | |
ch = logging.StreamHandler() | |
ch.setLevel(logging.INFO) | |
formatter = logging.Formatter("%(asctime)s;%(levelname)s;%(message)s", "%Y-%m-%d %H:%M:%S") | |
ch.setFormatter(formatter) | |
logger.addHandler(ch) | |
def identity(batch): | |
return batch | |
# Copied from https://github.com/openai/whisper/blob/c09a7ae299c4c34c5839a76380ae407e7d785914/whisper/utils.py#L50 | |
def format_timestamp(seconds: float, always_include_hours: bool = False, decimal_marker: str = "."): | |
if seconds is not None: | |
milliseconds = round(seconds * 1000.0) | |
hours = milliseconds // 3_600_000 | |
milliseconds -= hours * 3_600_000 | |
minutes = milliseconds // 60_000 | |
milliseconds -= minutes * 60_000 | |
seconds = milliseconds // 1_000 | |
milliseconds -= seconds * 1_000 | |
hours_marker = f"{hours:02d}:" if always_include_hours or hours > 0 else "" | |
return f"{hours_marker}{minutes:02d}:{seconds:02d}{decimal_marker}{milliseconds:03d}" | |
else: | |
# we have a malformed timestamp so just return it as is | |
return seconds | |
if __name__ == "__main__": | |
pipeline = FlaxWhisperPipline(checkpoint, dtype=jnp.bfloat16, batch_size=BATCH_SIZE) | |
stride_length_s = CHUNK_LENGTH_S / 6 | |
chunk_len = round(CHUNK_LENGTH_S * pipeline.feature_extractor.sampling_rate) | |
stride_left = stride_right = round(stride_length_s * pipeline.feature_extractor.sampling_rate) | |
step = chunk_len - stride_left - stride_right | |
# do a pre-compile step so that the first user to use the demo isn't hit with a long transcription time | |
logger.info("compiling forward call...") | |
start = time.time() | |
random_inputs = { | |
"input_features": np.ones( | |
(BATCH_SIZE, pipeline.model.config.num_mel_bins, 2 * pipeline.model.config.max_source_positions) | |
) | |
} | |
random_timestamps = pipeline.forward(random_inputs, batch_size=BATCH_SIZE, return_timestamps=True) | |
compile_time = time.time() - start | |
logger.info(f"compiled in {compile_time}s") | |
def tqdm_generate(inputs: dict, task: str, return_timestamps: bool, progress: gr.Progress): | |
inputs_len = inputs["array"].shape[0] | |
all_chunk_start_idx = np.arange(0, inputs_len, step) | |
num_samples = len(all_chunk_start_idx) | |
num_batches = math.ceil(num_samples / BATCH_SIZE) | |
dummy_batches = list( | |
range(num_batches) | |
) # Gradio progress bar not compatible with generator, see https://github.com/gradio-app/gradio/issues/3841 | |
dataloader = pipeline.preprocess_batch(inputs, chunk_length_s=CHUNK_LENGTH_S, batch_size=BATCH_SIZE) | |
model_outputs = [] | |
start_time = time.time() | |
logger.info("transcribing...") | |
# iterate over our chunked audio samples - always predict timestamps to reduce hallucinations | |
for batch, _ in zip(dataloader, progress.tqdm(dummy_batches, desc="Transcribing...")): | |
model_outputs.append(pipeline.forward(batch, batch_size=BATCH_SIZE, task=task, return_timestamps=True)) | |
runtime = time.time() - start_time | |
logger.info("done transcription") | |
logger.info("post-processing...") | |
post_processed = pipeline.postprocess(model_outputs, return_timestamps=True) | |
text = post_processed["text"] | |
if return_timestamps: | |
timestamps = post_processed.get("chunks") | |
timestamps = [ | |
f"[{format_timestamp(chunk['timestamp'][0])} -> {format_timestamp(chunk['timestamp'][1])}] {chunk['text']}" | |
for chunk in timestamps | |
] | |
text = "\n".join(str(feature) for feature in timestamps) | |
logger.info("done post-processing") | |
return text, runtime | |
def transcribe_chunked_audio(inputs, task, return_timestamps, progress=gr.Progress()): | |
progress(0, desc="Loading audio file...") | |
logger.info("loading audio file...") | |
if inputs is None: | |
logger.warning("No audio file") | |
raise gr.Error("No audio file submitted! Please upload an audio file before submitting your request.") | |
file_size_mb = os.stat(inputs).st_size / (1024 * 1024) | |
if file_size_mb > FILE_LIMIT_MB: | |
logger.warning("Max file size exceeded") | |
raise gr.Error( | |
f"File size exceeds file size limit. Got file of size {file_size_mb:.2f}MB for a limit of {FILE_LIMIT_MB}MB." | |
) | |
with open(inputs, "rb") as f: | |
inputs = f.read() | |
inputs = ffmpeg_read(inputs, pipeline.feature_extractor.sampling_rate) | |
inputs = {"array": inputs, "sampling_rate": pipeline.feature_extractor.sampling_rate} | |
logger.info("done loading") | |
text, runtime = tqdm_generate(inputs, task=task, return_timestamps=return_timestamps, progress=progress) | |
return text, runtime | |
def _return_yt_html_embed(yt_url): | |
video_id = yt_url.split("?v=")[-1] | |
HTML_str = ( | |
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>' | |
" </center>" | |
) | |
return HTML_str | |
def download_yt_audio(yt_url, filename): | |
info_loader = youtube_dl.YoutubeDL() | |
try: | |
info = info_loader.extract_info(yt_url, download=False) | |
except youtube_dl.utils.DownloadError as err: | |
raise gr.Error(str(err)) | |
file_length = info["duration_string"] | |
file_h_m_s = file_length.split(":") | |
file_h_m_s = [int(sub_length) for sub_length in file_h_m_s] | |
if len(file_h_m_s) == 1: | |
file_h_m_s.insert(0, 0) | |
if len(file_h_m_s) == 2: | |
file_h_m_s.insert(0, 0) | |
file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2] | |
if file_length_s > YT_LENGTH_LIMIT_S: | |
yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S)) | |
file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s)) | |
raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.") | |
ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"} | |
with youtube_dl.YoutubeDL(ydl_opts) as ydl: | |
try: | |
ydl.download([yt_url]) | |
except youtube_dl.utils.ExtractorError as err: | |
raise gr.Error(str(err)) | |
def transcribe_youtube(yt_url, task, return_timestamps, progress=gr.Progress()): | |
progress(0, desc="Loading audio file...") | |
logger.info("loading youtube file...") | |
html_embed_str = _return_yt_html_embed(yt_url) | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
filepath = os.path.join(tmpdirname, "video.mp4") | |
download_yt_audio(yt_url, filepath) | |
with open(filepath, "rb") as f: | |
inputs = f.read() | |
inputs = ffmpeg_read(inputs, pipeline.feature_extractor.sampling_rate) | |
inputs = {"array": inputs, "sampling_rate": pipeline.feature_extractor.sampling_rate} | |
logger.info("done loading...") | |
text, runtime = tqdm_generate(inputs, task=task, return_timestamps=return_timestamps, progress=progress) | |
return html_embed_str, text, runtime | |
microphone_chunked = gr.Interface( | |
fn=transcribe_chunked_audio, | |
inputs=[ | |
gr.Audio(sources=["microphone"], type="filepath"), | |
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"), | |
gr.Checkbox(value=False, label="Return timestamps"), | |
], | |
outputs=[ | |
gr.Textbox(label="Transcription", show_copy_button=True), | |
gr.Textbox(label="Transcription Time (s)"), | |
], | |
allow_flagging="never", | |
title=title, | |
description=description, | |
article=article, | |
) | |
audio_chunked = gr.Interface( | |
fn=transcribe_chunked_audio, | |
inputs=[ | |
gr.Audio(sources=["upload"], label="Audio file", type="filepath"), | |
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"), | |
gr.Checkbox(value=False, label="Return timestamps"), | |
], | |
outputs=[ | |
gr.Textbox(label="Transcription", show_copy_button=True), | |
gr.Textbox(label="Transcription Time (s)"), | |
], | |
allow_flagging="never", | |
title=title, | |
description=description, | |
article=article, | |
) | |
youtube = gr.Interface( | |
fn=transcribe_youtube, | |
inputs=[ | |
gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"), | |
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"), | |
gr.Checkbox(value=False, label="Return timestamps"), | |
], | |
outputs=[ | |
gr.HTML(label="Video"), | |
gr.Textbox(label="Transcription", show_copy_button=True), | |
gr.Textbox(label="Transcription Time (s)"), | |
], | |
allow_flagging="never", | |
title=title, | |
examples=[["https://www.youtube.com/watch?v=m8u-18Q0s7I", "transcribe", False]], | |
cache_examples=False, | |
description=description, | |
article=article, | |
) | |
demo = gr.Blocks() | |
with demo: | |
gr.TabbedInterface([microphone_chunked, audio_chunked, youtube], ["Microphone", "Audio File", "YouTube"]) | |
demo.queue(max_size=5) | |
demo.launch(show_api=False) | |