Spaces:
Running
Running
from PIL import Image | |
from tqdm import tqdm | |
from transformers import VisionEncoderDecoderModel, ViTFeatureExtractor, AutoTokenizer | |
import torch | |
from PIL import Image | |
from tqdm import tqdm | |
import urllib.request | |
from itertools import cycle | |
import os | |
model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning") | |
feature_extractor = ViTFeatureExtractor.from_pretrained("nlpconnect/vit-gpt2-image-captioning") | |
tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning") | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model.to(device) | |
max_length = 16 | |
num_beams = 4 | |
num_return_sequences = 3 # Number of captions to generate for each image | |
gen_kwargs = {"max_length": max_length, "num_beams": num_beams, "num_return_sequences": num_return_sequences} | |
def predict_step(images_list,is_url): | |
images = [] | |
for image in tqdm(images_list): | |
if is_url: | |
urllib.request.urlretrieve(image, "file.jpg") | |
i_image = Image.open("file.jpg") | |
else: | |
i_image = Image.open(image) | |
if i_image.mode != "RGB": | |
i_image = i_image.convert(mode="RGB") | |
images.append(i_image) | |
pixel_values = feature_extractor(images=images, return_tensors="pt").pixel_values | |
pixel_values = pixel_values.to(device) | |
output_ids = model.generate(pixel_values, **gen_kwargs) | |
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True) | |
preds = [pred.strip() for pred in preds] | |
if is_url: | |
os.remove('file.jpg') | |
return preds | |