import gradio as gr from transformers import TapexTokenizer, BartForConditionalGeneration import pandas as pd tokenizer = TapexTokenizer.from_pretrained("microsoft/tapex-large-finetuned-wtq") model = BartForConditionalGeneration.from_pretrained("microsoft/tapex-large-finetuned-wtq") data = { "year": [1896, 1900, 1904, 2004, 2008, 2012], "city": ["athens", "paris", "st. louis", "athens", "beijing", "london"] } table = pd.DataFrame.from_dict(data) # tapex accepts uncased input since it is pre-trained on the uncased corpus #query = "how many different countries had election in 21st century?" #encoding = tokenizer(table=table, query=query, return_tensors="pt") # outputs = model.generate(**encoding) # print(tokenizer.batch_decode(outputs, skip_special_tokens=True)) # [' 2008.0'] def launch(input): encoding = tokenizer(table=table, query=input, return_tensors="pt") outputs=model.generate(**encoding) return tokenizer.batch_decode(outputs, skip_special_tokens=True) iface = gr.Interface(launch, inputs="text", outputs="text") iface.launch(share=True)