|
|
|
|
|
import streamlit as st |
|
import torchaudio |
|
import torch |
|
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor |
|
import numpy as np |
|
|
|
|
|
model_name_or_path = "sarahai/uzbek-stt-3" |
|
processor = Wav2Vec2Processor.from_pretrained(model_name_or_path) |
|
model = Wav2Vec2ForCTC.from_pretrained(model_name_or_path) |
|
|
|
|
|
def preprocess_audio(file, chunk_duration=10): |
|
speech_array, sampling_rate = torchaudio.load(file) |
|
|
|
|
|
if sampling_rate != 16000: |
|
resampler = torchaudio.transforms.Resample(orig_freq=sampling_rate, new_freq=16000) |
|
speech_array = resampler(speech_array) |
|
|
|
speech_array = speech_array.squeeze().numpy() |
|
|
|
|
|
chunk_size = chunk_duration * 16000 |
|
chunks = [speech_array[i:i + chunk_size] for i in range(0, len(speech_array), chunk_size)] |
|
|
|
return chunks |
|
|
|
def transcribe_audio(chunks): |
|
transcription = "" |
|
|
|
for chunk in chunks: |
|
input_values = processor(chunk, return_tensors="pt", sampling_rate=16000).input_values |
|
with torch.no_grad(): |
|
logits = model(input_values).logits |
|
predicted_ids = torch.argmax(logits, dim=-1) |
|
chunk_transcription = processor.decode(predicted_ids[0]) |
|
chunk_transcription = chunk_transcription.replace("[UNK]", "'") |
|
transcription += chunk_transcription + " " |
|
|
|
return transcription.strip() |
|
|
|
|
|
st.title("Speech-to-Text Transcription App") |
|
st.write("Upload an audio file to transcribe.") |
|
|
|
audio_file = st.file_uploader("Upload an audio file", type=["wav", "mp3"]) |
|
|
|
if audio_file is not None: |
|
|
|
chunks = preprocess_audio(audio_file) |
|
transcription = transcribe_audio(chunks) |
|
|
|
st.write("Transcription:") |
|
st.text(transcription) |
|
|
|
|