Spaces:
Running
Running
File size: 11,529 Bytes
ef12a74 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
# Published under Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
# Adapted by Florian Lux, 2021
import torch
import torch.nn.functional as F
from ..Utility.utils import make_pad_mask
from ..Utility.utils import to_device
def _apply_attention_constraint(e, last_attended_idx, backward_window=1, forward_window=3):
"""
Apply monotonic attention constraint.
This function apply the monotonic attention constraint
introduced in `Deep Voice 3: Scaling
Text-to-Speech with Convolutional Sequence Learning`_.
Args:
e (Tensor): Attention energy before applying softmax (1, T).
last_attended_idx (int): The index of the inputs of the last attended [0, T].
backward_window (int, optional): Backward window size in attention constraint.
forward_window (int, optional): Forward window size in attetion constraint.
Returns:
Tensor: Monotonic constrained attention energy (1, T).
.. _`Deep Voice 3: Scaling Text-to-Speech with Convolutional Sequence Learning`:
https://arxiv.org/abs/1710.07654
"""
if e.size(0) != 1:
raise NotImplementedError("Batch attention constraining is not yet supported.")
backward_idx = last_attended_idx - backward_window
forward_idx = last_attended_idx + forward_window
if backward_idx > 0:
e[:, :backward_idx] = -float("inf")
if forward_idx < e.size(1):
e[:, forward_idx:] = -float("inf")
return e
class AttLoc(torch.nn.Module):
"""
location-aware attention module.
Reference: Attention-Based Models for Speech Recognition
(https://arxiv.org/pdf/1506.07503.pdf)
:param int eprojs: # projection-units of encoder
:param int dunits: # units of decoder
:param int att_dim: attention dimension
:param int aconv_chans: # channels of attention convolution
:param int aconv_filts: filter size of attention convolution
:param bool han_mode: flag to switch on mode of hierarchical attention
and not store pre_compute_enc_h
"""
def __init__(self, eprojs, dunits, att_dim, aconv_chans, aconv_filts, han_mode=False):
super(AttLoc, self).__init__()
self.mlp_enc = torch.nn.Linear(eprojs, att_dim)
self.mlp_dec = torch.nn.Linear(dunits, att_dim, bias=False)
self.mlp_att = torch.nn.Linear(aconv_chans, att_dim, bias=False)
self.loc_conv = torch.nn.Conv2d(1, aconv_chans, (1, 2 * aconv_filts + 1), padding=(0, aconv_filts), bias=False, )
self.gvec = torch.nn.Linear(att_dim, 1)
self.dunits = dunits
self.eprojs = eprojs
self.att_dim = att_dim
self.h_length = None
self.enc_h = None
self.pre_compute_enc_h = None
self.mask = None
self.han_mode = han_mode
def reset(self):
"""reset states"""
self.h_length = None
self.enc_h = None
self.pre_compute_enc_h = None
self.mask = None
def forward(self,
enc_hs_pad,
enc_hs_len,
dec_z,
att_prev,
scaling=2.0,
last_attended_idx=None,
backward_window=1,
forward_window=3):
"""
Calculate AttLoc forward propagation.
:param torch.Tensor enc_hs_pad: padded encoder hidden state (B x T_max x D_enc)
:param list enc_hs_len: padded encoder hidden state length (B)
:param torch.Tensor dec_z: decoder hidden state (B x D_dec)
:param torch.Tensor att_prev: previous attention weight (B x T_max)
:param float scaling: scaling parameter before applying softmax
:param torch.Tensor forward_window:
forward window size when constraining attention
:param int last_attended_idx: index of the inputs of the last attended
:param int backward_window: backward window size in attention constraint
:param int forward_window: forward window size in attention constraint
:return: attention weighted encoder state (B, D_enc)
:rtype: torch.Tensor
:return: previous attention weights (B x T_max)
:rtype: torch.Tensor
"""
batch = len(enc_hs_pad)
# pre-compute all h outside the decoder loop
if self.pre_compute_enc_h is None or self.han_mode:
self.enc_h = enc_hs_pad # utt x frame x hdim
self.h_length = self.enc_h.size(1)
# utt x frame x att_dim
self.pre_compute_enc_h = self.mlp_enc(self.enc_h)
if dec_z is None:
dec_z = enc_hs_pad.new_zeros(batch, self.dunits)
else:
dec_z = dec_z.view(batch, self.dunits)
# initialize attention weight with uniform dist.
if att_prev is None:
# if no bias, 0 0-pad goes 0
att_prev = 1.0 - make_pad_mask(enc_hs_len, device=dec_z.device).to(dtype=dec_z.dtype)
att_prev = att_prev / att_prev.new(enc_hs_len).unsqueeze(-1)
# att_prev: utt x frame -> utt x 1 x 1 x frame
# -> utt x att_conv_chans x 1 x frame
att_conv = self.loc_conv(att_prev.view(batch, 1, 1, self.h_length))
# att_conv: utt x att_conv_chans x 1 x frame -> utt x frame x att_conv_chans
att_conv = att_conv.squeeze(2).transpose(1, 2)
# att_conv: utt x frame x att_conv_chans -> utt x frame x att_dim
att_conv = self.mlp_att(att_conv)
# dec_z_tiled: utt x frame x att_dim
dec_z_tiled = self.mlp_dec(dec_z).view(batch, 1, self.att_dim)
# dot with gvec
# utt x frame x att_dim -> utt x frame
e = self.gvec(torch.tanh(att_conv + self.pre_compute_enc_h + dec_z_tiled)).squeeze(2)
# NOTE: consider zero padding when compute w.
if self.mask is None:
self.mask = to_device(enc_hs_pad, make_pad_mask(enc_hs_len))
e.masked_fill_(self.mask, -float("inf"))
# apply monotonic attention constraint (mainly for TTS)
if last_attended_idx is not None:
e = _apply_attention_constraint(e, last_attended_idx, backward_window, forward_window)
w = F.softmax(scaling * e, dim=1)
# weighted sum over flames
# utt x hdim
c = torch.sum(self.enc_h * w.view(batch, self.h_length, 1), dim=1)
return c, w
class AttForwardTA(torch.nn.Module):
"""Forward attention with transition agent module.
Reference:
Forward attention in sequence-to-sequence acoustic modeling for speech synthesis
(https://arxiv.org/pdf/1807.06736.pdf)
:param int eunits: # units of encoder
:param int dunits: # units of decoder
:param int att_dim: attention dimension
:param int aconv_chans: # channels of attention convolution
:param int aconv_filts: filter size of attention convolution
:param int odim: output dimension
"""
def __init__(self, eunits, dunits, att_dim, aconv_chans, aconv_filts, odim):
super(AttForwardTA, self).__init__()
self.mlp_enc = torch.nn.Linear(eunits, att_dim)
self.mlp_dec = torch.nn.Linear(dunits, att_dim, bias=False)
self.mlp_ta = torch.nn.Linear(eunits + dunits + odim, 1)
self.mlp_att = torch.nn.Linear(aconv_chans, att_dim, bias=False)
self.loc_conv = torch.nn.Conv2d(1, aconv_chans, (1, 2 * aconv_filts + 1), padding=(0, aconv_filts), bias=False, )
self.gvec = torch.nn.Linear(att_dim, 1)
self.dunits = dunits
self.eunits = eunits
self.att_dim = att_dim
self.h_length = None
self.enc_h = None
self.pre_compute_enc_h = None
self.mask = None
self.trans_agent_prob = 0.5
def reset(self):
self.h_length = None
self.enc_h = None
self.pre_compute_enc_h = None
self.mask = None
self.trans_agent_prob = 0.5
def forward(self,
enc_hs_pad,
enc_hs_len,
dec_z,
att_prev,
out_prev,
scaling=1.0,
last_attended_idx=None,
backward_window=1,
forward_window=3):
"""
Calculate AttForwardTA forward propagation.
:param torch.Tensor enc_hs_pad: padded encoder hidden state (B, Tmax, eunits)
:param list enc_hs_len: padded encoder hidden state length (B)
:param torch.Tensor dec_z: decoder hidden state (B, dunits)
:param torch.Tensor att_prev: attention weights of previous step
:param torch.Tensor out_prev: decoder outputs of previous step (B, odim)
:param float scaling: scaling parameter before applying softmax
:param int last_attended_idx: index of the inputs of the last attended
:param int backward_window: backward window size in attention constraint
:param int forward_window: forward window size in attetion constraint
:return: attention weighted encoder state (B, dunits)
:rtype: torch.Tensor
:return: previous attention weights (B, Tmax)
:rtype: torch.Tensor
"""
batch = len(enc_hs_pad)
# pre-compute all h outside the decoder loop
if self.pre_compute_enc_h is None:
self.enc_h = enc_hs_pad # utt x frame x hdim
self.h_length = self.enc_h.size(1)
# utt x frame x att_dim
self.pre_compute_enc_h = self.mlp_enc(self.enc_h)
if dec_z is None:
dec_z = enc_hs_pad.new_zeros(batch, self.dunits)
else:
dec_z = dec_z.view(batch, self.dunits)
if att_prev is None:
# initial attention will be [1, 0, 0, ...]
att_prev = enc_hs_pad.new_zeros(*enc_hs_pad.size()[:2])
att_prev[:, 0] = 1.0
# att_prev: utt x frame -> utt x 1 x 1 x frame
# -> utt x att_conv_chans x 1 x frame
att_conv = self.loc_conv(att_prev.view(batch, 1, 1, self.h_length))
# att_conv: utt x att_conv_chans x 1 x frame -> utt x frame x att_conv_chans
att_conv = att_conv.squeeze(2).transpose(1, 2)
# att_conv: utt x frame x att_conv_chans -> utt x frame x att_dim
att_conv = self.mlp_att(att_conv)
# dec_z_tiled: utt x frame x att_dim
dec_z_tiled = self.mlp_dec(dec_z).view(batch, 1, self.att_dim)
# dot with gvec
# utt x frame x att_dim -> utt x frame
e = self.gvec(torch.tanh(att_conv + self.pre_compute_enc_h + dec_z_tiled)).squeeze(2)
# NOTE consider zero padding when compute w.
if self.mask is None:
self.mask = to_device(enc_hs_pad, make_pad_mask(enc_hs_len))
e.masked_fill_(self.mask, -float("inf"))
# apply monotonic attention constraint (mainly for TTS)
if last_attended_idx is not None:
e = _apply_attention_constraint(e, last_attended_idx, backward_window, forward_window)
w = F.softmax(scaling * e, dim=1)
# forward attention
att_prev_shift = F.pad(att_prev, (1, 0))[:, :-1]
w = (self.trans_agent_prob * att_prev + (1 - self.trans_agent_prob) * att_prev_shift) * w
# NOTE: clamp is needed to avoid nan gradient
w = F.normalize(torch.clamp(w, 1e-6), p=1, dim=1)
# weighted sum over flames
# utt x hdim
# NOTE use bmm instead of sum(*)
c = torch.sum(self.enc_h * w.view(batch, self.h_length, 1), dim=1)
# update transition agent prob
self.trans_agent_prob = torch.sigmoid(self.mlp_ta(torch.cat([c, out_prev, dec_z], dim=1)))
return c, w
|