|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
from dataclasses import dataclass |
|
from typing import List, Tuple, Optional |
|
|
|
import torch |
|
from einops import rearrange |
|
from torch import Tensor, nn |
|
|
|
|
|
def attention(q: Tensor, k: Tensor, v: Tensor, **kwargs) -> Tensor: |
|
x = torch.nn.functional.scaled_dot_product_attention(q, k, v) |
|
x = rearrange(x, "B H L D -> B L (H D)") |
|
return x |
|
|
|
|
|
def timestep_embedding(t: Tensor, dim, max_period=10000, time_factor: float = 1000.0): |
|
""" |
|
Create sinusoidal timestep embeddings. |
|
:param t: a 1-D Tensor of N indices, one per batch element. |
|
These may be fractional. |
|
:param dim: the dimension of the output. |
|
:param max_period: controls the minimum frequency of the embeddings. |
|
:return: an (N, D) Tensor of positional embeddings. |
|
""" |
|
t = time_factor * t |
|
half = dim // 2 |
|
freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to( |
|
t.device |
|
) |
|
|
|
args = t[:, None].float() * freqs[None] |
|
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) |
|
if dim % 2: |
|
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) |
|
if torch.is_floating_point(t): |
|
embedding = embedding.to(t) |
|
return embedding |
|
|
|
|
|
class MLPEmbedder(nn.Module): |
|
def __init__(self, in_dim: int, hidden_dim: int): |
|
super().__init__() |
|
self.in_layer = nn.Linear(in_dim, hidden_dim, bias=True) |
|
self.silu = nn.SiLU() |
|
self.out_layer = nn.Linear(hidden_dim, hidden_dim, bias=True) |
|
|
|
def forward(self, x: Tensor) -> Tensor: |
|
return self.out_layer(self.silu(self.in_layer(x))) |
|
|
|
|
|
class RMSNorm(torch.nn.Module): |
|
def __init__(self, dim: int): |
|
super().__init__() |
|
self.scale = nn.Parameter(torch.ones(dim)) |
|
|
|
def forward(self, x: Tensor): |
|
x_dtype = x.dtype |
|
x = x.float() |
|
rrms = torch.rsqrt(torch.mean(x ** 2, dim=-1, keepdim=True) + 1e-6) |
|
return (x * rrms).to(dtype=x_dtype) * self.scale |
|
|
|
|
|
class QKNorm(torch.nn.Module): |
|
def __init__(self, dim: int): |
|
super().__init__() |
|
self.query_norm = RMSNorm(dim) |
|
self.key_norm = RMSNorm(dim) |
|
|
|
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tuple[Tensor, Tensor]: |
|
q = self.query_norm(q) |
|
k = self.key_norm(k) |
|
return q.to(v), k.to(v) |
|
|
|
|
|
class SelfAttention(nn.Module): |
|
def __init__( |
|
self, |
|
dim: int, |
|
num_heads: int = 8, |
|
qkv_bias: bool = False, |
|
): |
|
super().__init__() |
|
self.num_heads = num_heads |
|
head_dim = dim // num_heads |
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) |
|
self.norm = QKNorm(head_dim) |
|
self.proj = nn.Linear(dim, dim) |
|
|
|
def forward(self, x: Tensor, pe: Tensor) -> Tensor: |
|
qkv = self.qkv(x) |
|
q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads) |
|
q, k = self.norm(q, k, v) |
|
x = attention(q, k, v, pe=pe) |
|
x = self.proj(x) |
|
return x |
|
|
|
|
|
@dataclass |
|
class ModulationOut: |
|
shift: Tensor |
|
scale: Tensor |
|
gate: Tensor |
|
|
|
|
|
class Modulation(nn.Module): |
|
def __init__(self, dim: int, double: bool): |
|
super().__init__() |
|
self.is_double = double |
|
self.multiplier = 6 if double else 3 |
|
self.lin = nn.Linear(dim, self.multiplier * dim, bias=True) |
|
|
|
def forward(self, vec: Tensor) -> Tuple[ModulationOut, Optional[ModulationOut]]: |
|
out = self.lin(nn.functional.silu(vec))[:, None, :] |
|
out = out.chunk(self.multiplier, dim=-1) |
|
|
|
return ( |
|
ModulationOut(*out[:3]), |
|
ModulationOut(*out[3:]) if self.is_double else None, |
|
) |
|
|
|
|
|
class DoubleStreamBlock(nn.Module): |
|
def __init__( |
|
self, |
|
hidden_size: int, |
|
num_heads: int, |
|
mlp_ratio: float, |
|
qkv_bias: bool = False, |
|
): |
|
super().__init__() |
|
mlp_hidden_dim = int(hidden_size * mlp_ratio) |
|
self.num_heads = num_heads |
|
self.hidden_size = hidden_size |
|
self.img_mod = Modulation(hidden_size, double=True) |
|
self.img_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) |
|
self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias) |
|
|
|
self.img_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) |
|
self.img_mlp = nn.Sequential( |
|
nn.Linear(hidden_size, mlp_hidden_dim, bias=True), |
|
nn.GELU(approximate="tanh"), |
|
nn.Linear(mlp_hidden_dim, hidden_size, bias=True), |
|
) |
|
|
|
self.txt_mod = Modulation(hidden_size, double=True) |
|
self.txt_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) |
|
self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias) |
|
|
|
self.txt_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) |
|
self.txt_mlp = nn.Sequential( |
|
nn.Linear(hidden_size, mlp_hidden_dim, bias=True), |
|
nn.GELU(approximate="tanh"), |
|
nn.Linear(mlp_hidden_dim, hidden_size, bias=True), |
|
) |
|
|
|
def forward(self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor) -> Tuple[Tensor, Tensor]: |
|
img_mod1, img_mod2 = self.img_mod(vec) |
|
txt_mod1, txt_mod2 = self.txt_mod(vec) |
|
|
|
img_modulated = self.img_norm1(img) |
|
img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift |
|
img_qkv = self.img_attn.qkv(img_modulated) |
|
img_q, img_k, img_v = rearrange(img_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads) |
|
img_q, img_k = self.img_attn.norm(img_q, img_k, img_v) |
|
|
|
txt_modulated = self.txt_norm1(txt) |
|
txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift |
|
txt_qkv = self.txt_attn.qkv(txt_modulated) |
|
txt_q, txt_k, txt_v = rearrange(txt_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads) |
|
txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v) |
|
|
|
q = torch.cat((txt_q, img_q), dim=2) |
|
k = torch.cat((txt_k, img_k), dim=2) |
|
v = torch.cat((txt_v, img_v), dim=2) |
|
|
|
attn = attention(q, k, v, pe=pe) |
|
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1]:] |
|
|
|
img = img + img_mod1.gate * self.img_attn.proj(img_attn) |
|
img = img + img_mod2.gate * self.img_mlp((1 + img_mod2.scale) * self.img_norm2(img) + img_mod2.shift) |
|
|
|
txt = txt + txt_mod1.gate * self.txt_attn.proj(txt_attn) |
|
txt = txt + txt_mod2.gate * self.txt_mlp((1 + txt_mod2.scale) * self.txt_norm2(txt) + txt_mod2.shift) |
|
return img, txt |
|
|
|
|
|
class SingleStreamBlock(nn.Module): |
|
""" |
|
A DiT block with parallel linear layers as described in |
|
https://arxiv.org/abs/2302.05442 and adapted modulation interface. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
hidden_size: int, |
|
num_heads: int, |
|
mlp_ratio: float = 4.0, |
|
qk_scale: Optional[float] = None, |
|
): |
|
super().__init__() |
|
|
|
self.hidden_dim = hidden_size |
|
self.num_heads = num_heads |
|
head_dim = hidden_size // num_heads |
|
self.scale = qk_scale or head_dim ** -0.5 |
|
|
|
self.mlp_hidden_dim = int(hidden_size * mlp_ratio) |
|
|
|
self.linear1 = nn.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim) |
|
|
|
self.linear2 = nn.Linear(hidden_size + self.mlp_hidden_dim, hidden_size) |
|
|
|
self.norm = QKNorm(head_dim) |
|
|
|
self.hidden_size = hidden_size |
|
self.pre_norm = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) |
|
|
|
self.mlp_act = nn.GELU(approximate="tanh") |
|
self.modulation = Modulation(hidden_size, double=False) |
|
|
|
def forward(self, x: Tensor, vec: Tensor, pe: Tensor) -> Tensor: |
|
mod, _ = self.modulation(vec) |
|
|
|
x_mod = (1 + mod.scale) * self.pre_norm(x) + mod.shift |
|
qkv, mlp = torch.split(self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1) |
|
|
|
q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads) |
|
q, k = self.norm(q, k, v) |
|
|
|
|
|
attn = attention(q, k, v, pe=pe) |
|
|
|
output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2)) |
|
return x + mod.gate * output |
|
|
|
|
|
class LastLayer(nn.Module): |
|
def __init__(self, hidden_size: int, patch_size: int, out_channels: int): |
|
super().__init__() |
|
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) |
|
self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True) |
|
self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True)) |
|
|
|
def forward(self, x: Tensor, vec: Tensor) -> Tensor: |
|
shift, scale = self.adaLN_modulation(vec).chunk(2, dim=1) |
|
x = (1 + scale[:, None, :]) * self.norm_final(x) + shift[:, None, :] |
|
x = self.linear(x) |
|
return x |
|
|
|
|
|
class Hunyuan3DDiT(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels: int = 64, |
|
context_in_dim: int = 1536, |
|
hidden_size: int = 1024, |
|
mlp_ratio: float = 4.0, |
|
num_heads: int = 16, |
|
depth: int = 16, |
|
depth_single_blocks: int = 32, |
|
axes_dim: List[int] = [64], |
|
theta: int = 10_000, |
|
qkv_bias: bool = True, |
|
time_factor: float = 1000, |
|
ckpt_path: Optional[str] = None, |
|
**kwargs, |
|
): |
|
super().__init__() |
|
self.in_channels = in_channels |
|
self.context_in_dim = context_in_dim |
|
self.hidden_size = hidden_size |
|
self.mlp_ratio = mlp_ratio |
|
self.num_heads = num_heads |
|
self.depth = depth |
|
self.depth_single_blocks = depth_single_blocks |
|
self.axes_dim = axes_dim |
|
self.theta = theta |
|
self.qkv_bias = qkv_bias |
|
self.time_factor = time_factor |
|
self.out_channels = self.in_channels |
|
|
|
if hidden_size % num_heads != 0: |
|
raise ValueError( |
|
f"Hidden size {hidden_size} must be divisible by num_heads {num_heads}" |
|
) |
|
pe_dim = hidden_size // num_heads |
|
if sum(axes_dim) != pe_dim: |
|
raise ValueError(f"Got {axes_dim} but expected positional dim {pe_dim}") |
|
self.hidden_size = hidden_size |
|
self.num_heads = num_heads |
|
self.latent_in = nn.Linear(self.in_channels, self.hidden_size, bias=True) |
|
self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size) |
|
self.cond_in = nn.Linear(context_in_dim, self.hidden_size) |
|
|
|
self.double_blocks = nn.ModuleList( |
|
[ |
|
DoubleStreamBlock( |
|
self.hidden_size, |
|
self.num_heads, |
|
mlp_ratio=mlp_ratio, |
|
qkv_bias=qkv_bias, |
|
) |
|
for _ in range(depth) |
|
] |
|
) |
|
|
|
self.single_blocks = nn.ModuleList( |
|
[ |
|
SingleStreamBlock( |
|
self.hidden_size, |
|
self.num_heads, |
|
mlp_ratio=mlp_ratio, |
|
) |
|
for _ in range(depth_single_blocks) |
|
] |
|
) |
|
|
|
self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels) |
|
|
|
if ckpt_path is not None: |
|
print('restored denoiser ckpt', ckpt_path) |
|
|
|
ckpt = torch.load(ckpt_path, map_location="cpu") |
|
if 'state_dict' not in ckpt: |
|
|
|
state_dict = {} |
|
for k in ckpt.keys(): |
|
new_k = k.replace('_forward_module.', '') |
|
state_dict[new_k] = ckpt[k] |
|
else: |
|
state_dict = ckpt["state_dict"] |
|
|
|
final_state_dict = {} |
|
for k, v in state_dict.items(): |
|
if k.startswith('model.'): |
|
final_state_dict[k.replace('model.', '')] = v |
|
else: |
|
final_state_dict[k] = v |
|
missing, unexpected = self.load_state_dict(final_state_dict, strict=False) |
|
print('unexpected keys:', unexpected) |
|
print('missing keys:', missing) |
|
|
|
def forward( |
|
self, |
|
x, |
|
t, |
|
contexts, |
|
**kwargs, |
|
) -> Tensor: |
|
cond = contexts['main'] |
|
latent = self.latent_in(x) |
|
vec = self.time_in(timestep_embedding(t, 256, self.time_factor).to(dtype=latent.dtype)) |
|
cond = self.cond_in(cond) |
|
pe = None |
|
|
|
for block in self.double_blocks: |
|
latent, cond = block(img=latent, txt=cond, vec=vec, pe=pe) |
|
|
|
latent = torch.cat((cond, latent), 1) |
|
for block in self.single_blocks: |
|
latent = block(latent, vec=vec, pe=pe) |
|
|
|
latent = latent[:, cond.shape[1]:, ...] |
|
latent = self.final_layer(latent, vec) |
|
return latent |
|
|