|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
from dataclasses import dataclass |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import numpy as np |
|
import torch |
|
from diffusers.configuration_utils import ConfigMixin, register_to_config |
|
from diffusers.schedulers.scheduling_utils import SchedulerMixin |
|
from diffusers.utils import BaseOutput, logging |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
@dataclass |
|
class FlowMatchEulerDiscreteSchedulerOutput(BaseOutput): |
|
""" |
|
Output class for the scheduler's `step` function output. |
|
|
|
Args: |
|
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): |
|
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the |
|
denoising loop. |
|
""" |
|
|
|
prev_sample: torch.FloatTensor |
|
|
|
|
|
class FlowMatchEulerDiscreteScheduler(SchedulerMixin, ConfigMixin): |
|
""" |
|
NOTE: this is very similar to diffusers.FlowMatchEulerDiscreteScheduler. Except our timesteps are reversed |
|
|
|
Euler scheduler. |
|
|
|
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic |
|
methods the library implements for all schedulers such as loading and saving. |
|
|
|
Args: |
|
num_train_timesteps (`int`, defaults to 1000): |
|
The number of diffusion steps to train the model. |
|
timestep_spacing (`str`, defaults to `"linspace"`): |
|
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and |
|
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information. |
|
shift (`float`, defaults to 1.0): |
|
The shift value for the timestep schedule. |
|
""" |
|
|
|
_compatibles = [] |
|
order = 1 |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
num_train_timesteps: int = 1000, |
|
shift: float = 1.0, |
|
use_dynamic_shifting=False, |
|
): |
|
timesteps = np.linspace(1, num_train_timesteps, num_train_timesteps, dtype=np.float32).copy() |
|
timesteps = torch.from_numpy(timesteps).to(dtype=torch.float32) |
|
|
|
sigmas = timesteps / num_train_timesteps |
|
if not use_dynamic_shifting: |
|
|
|
sigmas = shift * sigmas / (1 + (shift - 1) * sigmas) |
|
|
|
self.timesteps = sigmas * num_train_timesteps |
|
|
|
self._step_index = None |
|
self._begin_index = None |
|
|
|
self.sigmas = sigmas.to("cpu") |
|
self.sigma_min = self.sigmas[-1].item() |
|
self.sigma_max = self.sigmas[0].item() |
|
|
|
@property |
|
def step_index(self): |
|
""" |
|
The index counter for current timestep. It will increase 1 after each scheduler step. |
|
""" |
|
return self._step_index |
|
|
|
@property |
|
def begin_index(self): |
|
""" |
|
The index for the first timestep. It should be set from pipeline with `set_begin_index` method. |
|
""" |
|
return self._begin_index |
|
|
|
|
|
def set_begin_index(self, begin_index: int = 0): |
|
""" |
|
Sets the begin index for the scheduler. This function should be run from pipeline before the inference. |
|
|
|
Args: |
|
begin_index (`int`): |
|
The begin index for the scheduler. |
|
""" |
|
self._begin_index = begin_index |
|
|
|
def scale_noise( |
|
self, |
|
sample: torch.FloatTensor, |
|
timestep: Union[float, torch.FloatTensor], |
|
noise: Optional[torch.FloatTensor] = None, |
|
) -> torch.FloatTensor: |
|
""" |
|
Forward process in flow-matching |
|
|
|
Args: |
|
sample (`torch.FloatTensor`): |
|
The input sample. |
|
timestep (`int`, *optional*): |
|
The current timestep in the diffusion chain. |
|
|
|
Returns: |
|
`torch.FloatTensor`: |
|
A scaled input sample. |
|
""" |
|
|
|
sigmas = self.sigmas.to(device=sample.device, dtype=sample.dtype) |
|
|
|
if sample.device.type == "mps" and torch.is_floating_point(timestep): |
|
|
|
schedule_timesteps = self.timesteps.to(sample.device, dtype=torch.float32) |
|
timestep = timestep.to(sample.device, dtype=torch.float32) |
|
else: |
|
schedule_timesteps = self.timesteps.to(sample.device) |
|
timestep = timestep.to(sample.device) |
|
|
|
|
|
if self.begin_index is None: |
|
step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timestep] |
|
elif self.step_index is not None: |
|
|
|
step_indices = [self.step_index] * timestep.shape[0] |
|
else: |
|
|
|
step_indices = [self.begin_index] * timestep.shape[0] |
|
|
|
sigma = sigmas[step_indices].flatten() |
|
while len(sigma.shape) < len(sample.shape): |
|
sigma = sigma.unsqueeze(-1) |
|
|
|
sample = sigma * noise + (1.0 - sigma) * sample |
|
|
|
return sample |
|
|
|
def _sigma_to_t(self, sigma): |
|
return sigma * self.config.num_train_timesteps |
|
|
|
def time_shift(self, mu: float, sigma: float, t: torch.Tensor): |
|
return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma) |
|
|
|
def set_timesteps( |
|
self, |
|
num_inference_steps: int = None, |
|
device: Union[str, torch.device] = None, |
|
sigmas: Optional[List[float]] = None, |
|
mu: Optional[float] = None, |
|
): |
|
""" |
|
Sets the discrete timesteps used for the diffusion chain (to be run before inference). |
|
|
|
Args: |
|
num_inference_steps (`int`): |
|
The number of diffusion steps used when generating samples with a pre-trained model. |
|
device (`str` or `torch.device`, *optional*): |
|
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. |
|
""" |
|
|
|
if self.config.use_dynamic_shifting and mu is None: |
|
raise ValueError(" you have a pass a value for `mu` when `use_dynamic_shifting` is set to be `True`") |
|
|
|
if sigmas is None: |
|
self.num_inference_steps = num_inference_steps |
|
timesteps = np.linspace( |
|
self._sigma_to_t(self.sigma_max), self._sigma_to_t(self.sigma_min), num_inference_steps |
|
) |
|
|
|
sigmas = timesteps / self.config.num_train_timesteps |
|
|
|
if self.config.use_dynamic_shifting: |
|
sigmas = self.time_shift(mu, 1.0, sigmas) |
|
else: |
|
sigmas = self.config.shift * sigmas / (1 + (self.config.shift - 1) * sigmas) |
|
|
|
sigmas = torch.from_numpy(sigmas).to(dtype=torch.float32, device=device) |
|
timesteps = sigmas * self.config.num_train_timesteps |
|
|
|
self.timesteps = timesteps.to(device=device) |
|
self.sigmas = torch.cat([sigmas, torch.ones(1, device=sigmas.device)]) |
|
|
|
self._step_index = None |
|
self._begin_index = None |
|
|
|
def index_for_timestep(self, timestep, schedule_timesteps=None): |
|
if schedule_timesteps is None: |
|
schedule_timesteps = self.timesteps |
|
|
|
indices = (schedule_timesteps == timestep).nonzero() |
|
|
|
|
|
|
|
|
|
|
|
pos = 1 if len(indices) > 1 else 0 |
|
|
|
return indices[pos].item() |
|
|
|
def _init_step_index(self, timestep): |
|
if self.begin_index is None: |
|
if isinstance(timestep, torch.Tensor): |
|
timestep = timestep.to(self.timesteps.device) |
|
self._step_index = self.index_for_timestep(timestep) |
|
else: |
|
self._step_index = self._begin_index |
|
|
|
def step( |
|
self, |
|
model_output: torch.FloatTensor, |
|
timestep: Union[float, torch.FloatTensor], |
|
sample: torch.FloatTensor, |
|
s_churn: float = 0.0, |
|
s_tmin: float = 0.0, |
|
s_tmax: float = float("inf"), |
|
s_noise: float = 1.0, |
|
generator: Optional[torch.Generator] = None, |
|
return_dict: bool = True, |
|
) -> Union[FlowMatchEulerDiscreteSchedulerOutput, Tuple]: |
|
""" |
|
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion |
|
process from the learned model outputs (most often the predicted noise). |
|
|
|
Args: |
|
model_output (`torch.FloatTensor`): |
|
The direct output from learned diffusion model. |
|
timestep (`float`): |
|
The current discrete timestep in the diffusion chain. |
|
sample (`torch.FloatTensor`): |
|
A current instance of a sample created by the diffusion process. |
|
s_churn (`float`): |
|
s_tmin (`float`): |
|
s_tmax (`float`): |
|
s_noise (`float`, defaults to 1.0): |
|
Scaling factor for noise added to the sample. |
|
generator (`torch.Generator`, *optional*): |
|
A random number generator. |
|
return_dict (`bool`): |
|
Whether or not to return a [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] or |
|
tuple. |
|
|
|
Returns: |
|
[`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] or `tuple`: |
|
If return_dict is `True`, [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] is |
|
returned, otherwise a tuple is returned where the first element is the sample tensor. |
|
""" |
|
|
|
if ( |
|
isinstance(timestep, int) |
|
or isinstance(timestep, torch.IntTensor) |
|
or isinstance(timestep, torch.LongTensor) |
|
): |
|
raise ValueError( |
|
( |
|
"Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to" |
|
" `EulerDiscreteScheduler.step()` is not supported. Make sure to pass" |
|
" one of the `scheduler.timesteps` as a timestep." |
|
), |
|
) |
|
|
|
if self.step_index is None: |
|
self._init_step_index(timestep) |
|
|
|
|
|
sample = sample.to(torch.float32) |
|
|
|
sigma = self.sigmas[self.step_index] |
|
sigma_next = self.sigmas[self.step_index + 1] |
|
|
|
prev_sample = sample + (sigma_next - sigma) * model_output |
|
|
|
|
|
prev_sample = prev_sample.to(model_output.dtype) |
|
|
|
|
|
self._step_index += 1 |
|
|
|
if not return_dict: |
|
return (prev_sample,) |
|
|
|
return FlowMatchEulerDiscreteSchedulerOutput(prev_sample=prev_sample) |
|
|
|
def __len__(self): |
|
return self.config.num_train_timesteps |
|
|