|
import gradio as gr |
|
from gradio_imageslider import ImageSlider |
|
from loadimg import load_img |
|
import spaces |
|
from transformers import AutoModelForImageSegmentation |
|
import torch |
|
from torchvision import transforms |
|
import uuid |
|
|
|
torch.set_float32_matmul_precision(["high", "highest"][0]) |
|
|
|
birefnet = AutoModelForImageSegmentation.from_pretrained( |
|
"ZhengPeng7/BiRefNet", trust_remote_code=True |
|
) |
|
birefnet.to("cuda") |
|
|
|
transform_image = transforms.Compose( |
|
[ |
|
transforms.Resize((1024, 1024)), |
|
transforms.ToTensor(), |
|
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), |
|
] |
|
) |
|
|
|
def fn(image): |
|
im = load_img(image, output_type="pil") |
|
im = im.convert("RGB") |
|
origin = im.copy() |
|
processed_image = process(im) |
|
|
|
name_path = 'bgremove_'+str(uuid.uuid4()) + '.png' |
|
processed_image.save(name_path) |
|
return (processed_image , origin) , name_path |
|
|
|
@spaces.GPU |
|
def process(image): |
|
image_size = image.size |
|
input_images = transform_image(image).unsqueeze(0).to("cuda") |
|
|
|
with torch.no_grad(): |
|
preds = birefnet(input_images)[-1].sigmoid().cpu() |
|
pred = preds[0].squeeze() |
|
pred_pil = transforms.ToPILImage()(pred) |
|
mask = pred_pil.resize(image_size) |
|
image.putalpha(mask) |
|
return image |
|
|
|
def process_file(f): |
|
name_path = f.rsplit(".", 1)[0] + ".png" |
|
im = load_img(f, output_type="pil") |
|
im = im.convert("RGB") |
|
transparent = process(im) |
|
transparent.save(name_path) |
|
return name_path |
|
|
|
slider1 = ImageSlider(label="Original vs AI Processed", type="pil") |
|
slider2 = ImageSlider(label="Original vs AI Processed", type="pil") |
|
image_upload = gr.Image(label="Upload an image") |
|
|
|
url_input = gr.Textbox(label="Paste an image URL") |
|
output_file = gr.File(label="Output PNG File") |
|
download_button = gr.File(label="Download") |
|
download_button2 = gr.File(label="Download") |
|
|
|
|
|
|
|
chameleon = load_img("butterfly.jpg", output_type="pil") |
|
url_example = "https://hips.hearstapps.com/hmg-prod/images/gettyimages-1229892983-square.jpg" |
|
|
|
tab1 = gr.Interface(fn, inputs=image_upload, outputs= [slider1 , download_button], examples=[chameleon], api_name="image") |
|
tab2 = gr.Interface(fn, inputs=url_input, outputs=[slider2 ,download_button2] , examples=[url_example], api_name="text") |
|
|
|
|
|
demo = gr.TabbedInterface( |
|
|
|
[tab1, tab2], ["Image Input", "URL Input"], title="AI Background Remover Pro" |
|
|
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch(show_error=True) |