Spaces:
Runtime error
Runtime error
import streamlit as st | |
import pandas as pd | |
import io | |
import re | |
# Constants | |
GITHUB_URL = "https://github.com/Sartify/STEL" | |
POSSIBLE_NON_BENCHMARK_COLS = ["Model Name", "Publisher", "Open?", "Basemodel", "Matryoshka", "Dimension", "Average"] | |
def extract_table_from_markdown(markdown_text, table_start): | |
"""Extract table content from markdown text.""" | |
lines = markdown_text.split('\n') | |
table_content = [] | |
capture = False | |
for line in lines: | |
if line.startswith(table_start): | |
capture = True | |
elif capture and (line.startswith('#') or line.strip() == ''): | |
break # Stop capturing when we reach a new section or an empty line | |
if capture: | |
table_content.append(line) | |
return '\n'.join(table_content) | |
# def markdown_table_to_df(table_content): | |
# """Convert markdown table to pandas DataFrame.""" | |
# # Split the table content into lines | |
# lines = table_content.split('\n') | |
# # Extract headers | |
# headers = [h.strip() for h in lines[0].split('|') if h.strip()] | |
# # Extract data | |
# data = [] | |
# for line in lines[2:]: # Skip the header separator line | |
# row = [cell.strip() for cell in line.split('|') if cell.strip()] | |
# if row: # Include any non-empty row | |
# # Pad the row with empty strings if it's shorter than the headers | |
# padded_row = row + [''] * (len(headers) - len(row)) | |
# data.append(padded_row[:len(headers)]) # Trim if longer than headers | |
# # Create DataFrame | |
# df = pd.DataFrame(data, columns=headers) | |
# # Convert numeric columns to float | |
# for col in df.columns: | |
# if col not in ["Model Name", "Publisher", "Open?", "Basemodel", "Matryoshka"]: | |
# df[col] = pd.to_numeric(df[col], errors='coerce') | |
# return df | |
def extract_model_name(link): | |
"""Extract model name from markdown link.""" | |
match = re.match(r'\[(.*?)\]\(.*?\)', link) | |
return match.group(1) if match else link | |
def markdown_table_to_df(table_content): | |
"""Convert markdown table to pandas DataFrame.""" | |
# Split the table content into lines | |
lines = table_content.split('\n') | |
# Extract headers | |
headers = [h.strip() for h in lines[0].split('|') if h.strip()] | |
# Extract data | |
data = [] | |
for line in lines[2:]: # Skip the header separator line | |
row = [cell.strip() for cell in line.split('|') if cell.strip()] | |
if row: # Include any non-empty row | |
# Pad the row with empty strings if it's shorter than the headers | |
padded_row = row + [''] * (len(headers) - len(row)) | |
data.append(padded_row[:len(headers)]) # Trim if longer than headers | |
# Create DataFrame | |
df = pd.DataFrame(data, columns=headers) | |
# Process 'Model Name' column to extract plain text from markdown link | |
if 'Model Name' in df.columns: | |
df['Model Name'] = df['Model Name'].apply(extract_model_name) | |
# Convert numeric columns to float and handle Dimension column | |
for col in df.columns: | |
if col == "Dimension": | |
df[col] = df[col].apply(lambda x: int(x) if x.isdigit() else "") | |
elif col not in ["Model Name", "Publisher", "Open?", "Basemodel", "Matryoshka"]: | |
df[col] = pd.to_numeric(df[col], errors='coerce') | |
return df | |
def setup_page(): | |
"""Set up the Streamlit page.""" | |
st.set_page_config(page_title="Swahili Text Embeddings Leaderboard", page_icon="⚡", layout="wide") | |
st.title("⚡ Swahili Text Embeddings Leaderboard (STEL)") | |
# st.image("https://raw.githubusercontent.com/username/repo/main/files/STEL.jpg", width=300) | |
st.image("https://huggingface.co/spaces/sartifyllc/Swahili-Text-Embeddings-Leaderboard/resolve/main/STEL.jpg", width=300) | |
def display_leaderboard(df): | |
"""Display the leaderboard.""" | |
st.header("📊 Leaderboard") | |
# Determine which non-benchmark columns are present | |
present_non_benchmark_cols = [col for col in POSSIBLE_NON_BENCHMARK_COLS if col in df.columns] | |
# Add filters | |
columns_to_filter = [col for col in df.columns if col not in present_non_benchmark_cols] | |
selected_columns = st.multiselect("Select benchmarks to display:", columns_to_filter, default=columns_to_filter) | |
# Filter dataframe | |
df_display = df[present_non_benchmark_cols + selected_columns] | |
# Display dataframe | |
st.dataframe(df_display.style.format("{:.4f}", subset=[col for col in df_display.columns if df_display[col].dtype == 'float64'])) | |
# Download buttons | |
csv = df_display.to_csv(index=False) | |
st.download_button(label="Download as CSV", data=csv, file_name="leaderboard.csv", mime="text/csv") | |
def display_evaluation(): | |
"""Display the evaluation section.""" | |
st.header("🧪 Evaluation") | |
st.markdown(""" | |
To evaluate a model on the Swahili Embeddings Text Benchmark, you can use the following Python script: | |
```python | |
pip install mteb | |
pip install sentence-transformers | |
import mteb | |
from sentence_transformers import SentenceTransformer | |
model_name = "MultiLinguSwahili-serengeti-E250-nli-matryoshka" | |
publisher = "sartifyllc" | |
models = ["sartifyllc/MultiLinguSwahili-bert-base-sw-cased-nli-matryoshka", f"{publisher}/{model_name}"] | |
for model_name in models: | |
truncate_dim = 768 | |
language = "swa" | |
device = torch.device("cuda:1" if torch.cuda.is_available() else "cpu") | |
model = SentenceTransformer(model_name, device=device, trust_remote_code=True) | |
tasks = [ | |
mteb.get_task("AfriSentiClassification", languages=["swa"]), | |
mteb.get_task("AfriSentiLangClassification", languages=["swa"]), | |
mteb.get_task("MasakhaNEWSClassification", languages=["swa"]), | |
mteb.get_task("MassiveIntentClassification", languages=["swa"]), | |
mteb.get_task("MassiveScenarioClassification", languages=["swa"]), | |
mteb.get_task("SwahiliNewsClassification", languages=["swa"]), | |
] | |
evaluation = mteb.MTEB(tasks=tasks) | |
results = evaluation.run(model, output_folder=f"{model_name}") | |
tasks = mteb.get_tasks(task_types=["PairClassification", "Reranking", "BitextMining", "Clustering", "Retrieval"], languages=["swa"]) | |
evaluation = mteb.MTEB(tasks=tasks) | |
results = evaluation.run(model, output_folder=f"{model_name}") | |
``` | |
""") | |
def display_contribution(): | |
"""Display the contribution section.""" | |
st.header("🤝 How to Contribute") | |
st.markdown(""" | |
We welcome and appreciate all contributions! You can help by: | |
### Table Work | |
- Filling in missing entries. | |
- New models are added as new rows to the leaderboard (maintaining descending order). | |
- Add new benchmarks as new columns in the leaderboard and include them in the benchmarks table (maintaining descending order). | |
### Code Work | |
- Improving the existing code. | |
- Requesting and implementing new features. | |
""") | |
def display_sponsorship(): | |
"""Display the sponsorship section.""" | |
st.header("🤝 Sponsorship") | |
st.markdown(""" | |
This benchmark is Swahili-based, and we need support translating and curating more tasks into Swahili. | |
Sponsorships are welcome to help advance this endeavour. Your sponsorship will facilitate essential | |
translation efforts, bridge language barriers, and make the benchmark accessible to a broader audience. | |
We are grateful for the dedication shown by our collaborators and aim to extend this impact further | |
with the support of sponsors committed to advancing language technologies. | |
""") | |
def main(): | |
setup_page() | |
# Read README content | |
with open("README.md", "r") as f: | |
readme_content = f.read() | |
# Extract and process leaderboard table | |
leaderboard_table = extract_table_from_markdown(readme_content, "| Model Name") | |
df_leaderboard = markdown_table_to_df(leaderboard_table) | |
display_leaderboard(df_leaderboard) | |
display_evaluation() | |
display_contribution() | |
display_sponsorship() | |
st.markdown("---") | |
st.markdown("Thank you for being part of this effort to advance Swahili language technologies!") | |
if __name__ == "__main__": | |
main() |