File size: 8,020 Bytes
b55d767
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
from __future__ import annotations

import os
from collections import defaultdict
from collections.abc import Callable

import numpy as np
import pandas as pd
import torch
import wandb
from torch.cuda.amp import GradScaler, autocast
from tqdm import tqdm

from utmosv2.utils import calc_metrics, print_metrics


def _train_1epoch(
    cfg,
    model: torch.nn.Module,
    train_dataloader: torch.utils.data.DataLoader,
    criterion: torch.nn.Module,
    optimizer: torch.optim.Optimizer,
    scheduler: torch.optim.lr_scheduler.LRScheduler,
    device: torch.device,
) -> dict[str, float]:
    model.train()
    train_loss = defaultdict(float)
    scaler = GradScaler()
    print(f"  (lr: {scheduler.get_last_lr()[0]:.6f})")
    pbar = tqdm(train_dataloader, total=len(train_dataloader))
    for i, t in enumerate(pbar):
        x, y = t[:-1], t[-1]
        x = [t.to(device, non_blocking=True) for t in x]
        y = y.to(device, non_blocking=True)

        if cfg.run.mixup:
            lmd = np.random.beta(cfg.run.mixup_alpha, cfg.run.mixup_alpha)
            perm = torch.randperm(x[0].shape[0]).to(device)
            x2 = [t[perm, :] for t in x]
            y2 = y[perm]

        optimizer.zero_grad()
        with autocast():
            if cfg.run.mixup:
                output = model(
                    *[lmd * t + (1 - lmd) * t2 for t, t2 in zip(x, x2)]
                ).squeeze(1)
                if isinstance(cfg.loss, list):
                    loss = [
                        (w1, lmd * l1 + (1 - lmd) * l2)
                        for (w1, l1), (_, l2) in zip(
                            criterion(output, y), criterion(output, y2)
                        )
                    ]
                else:
                    loss = lmd * criterion(output, y) + (1 - lmd) * criterion(
                        output, y2
                    )
            else:
                output = model(*x).squeeze(1)
                loss = criterion(output, y)
            if isinstance(loss, list):
                loss_total = sum(w * ls for w, ls in loss)
            else:
                loss_total = loss

        scaler.scale(loss_total).backward()
        scaler.step(optimizer)
        scaler.update()
        scheduler.step()

        train_loss["loss"] += loss_total.detach().float().cpu().item()
        if isinstance(loss, list):
            for (cl, _), (_, ls) in zip(cfg.loss, loss):
                train_loss[cl.name] += ls.detach().float().cpu().item()

        pbar.set_description(
            f'  loss: {train_loss["loss"] / (i + 1):.4f}'
            + (
                f' ({", ".join([f"{cl.name}: {train_loss[cl.name] / (i + 1):.4f}" for cl, _ in cfg.loss])})'
                if isinstance(loss, list)
                else ""
            )
        )

    return {name: v / len(train_dataloader) for name, v in train_loss.items()}


def _validate_1epoch(
    cfg,
    model: torch.nn.Module,
    valid_dataloader: torch.utils.data.DataLoader,
    criterion: torch.nn.Module,
    metrics: dict[str, Callable[[np.ndarray, np.ndarray], float]],
    device: torch.device,
) -> tuple[dict[str, float], dict[str, float], np.ndarray]:
    model.eval()
    valid_loss = defaultdict(float)
    valid_metrics = {name: 0.0 for name in metrics}
    valid_preds = []
    pbar = tqdm(valid_dataloader, total=len(valid_dataloader))

    with torch.no_grad():
        for i, t in enumerate(pbar):
            x, y = t[:-1], t[-1]
            x = [t.to(device, non_blocking=True) for t in x]
            y_cpu = y
            y = y.to(device, non_blocking=True)
            with autocast():
                output = model(*x).squeeze(1)
                loss = criterion(output, y)
            if isinstance(loss, list):
                loss_total = sum(w * ls for w, ls in loss)
            else:
                loss_total = loss
            valid_loss["loss"] += loss_total.detach().float().cpu().item()
            if isinstance(loss, list):
                for (cl, _), (_, ls) in zip(cfg.loss, loss):
                    valid_loss[cl.name] += ls.detach().float().cpu().item()
            output = output.cpu().numpy()
            for name, metric in metrics.items():
                valid_metrics[name] += metric(output, y_cpu.numpy())
            pbar.set_description(
                f'  val_loss: {valid_loss["loss"] / (i + 1):.4f} '
                + (
                    f'({", ".join([f"{cl.name}: {valid_loss[cl.name] / (i + 1):.4f}" for cl, _ in cfg.loss])}) '
                    if isinstance(loss, list)
                    else ""
                )
                + " - ".join(
                    [
                        f"val_{name}: {v / (i + 1):.4f}"
                        for name, v in valid_metrics.items()
                    ]
                )
            )
            valid_preds.append(output)

    valid_loss = {name: v / len(valid_dataloader) for name, v in valid_loss.items()}
    valid_metrics = {
        name: v / len(valid_dataloader) for name, v in valid_metrics.items()
    }
    valid_preds = np.concatenate(valid_preds)

    return valid_loss, valid_metrics, valid_preds


def run_train(
    cfg,
    model: torch.nn.Module,
    train_dataloader: torch.utils.data.DataLoader,
    valid_dataloader: torch.utils.data.DataLoader,
    valid_data: pd.DataFrame,
    oof_preds: np.ndarray,
    now_fold: int,
    criterion: torch.nn.Module,
    metrics: dict[str, Callable[[np.ndarray, np.ndarray], float]],
    optimizer: torch.optim.Optimizer,
    scheduler: torch.optim.lr_scheduler.LRScheduler,
    device: torch.device,
) -> None:
    best_metric = 0.0
    os.makedirs(cfg.save_path, exist_ok=True)

    for epoch in range(cfg.run.num_epochs):
        print(f"[Epoch {epoch + 1}/{cfg.run.num_epochs}]")
        train_loss = _train_1epoch(
            cfg, model, train_dataloader, criterion, optimizer, scheduler, device
        )
        valid_loss, _, valid_preds = _validate_1epoch(
            cfg, model, valid_dataloader, criterion, metrics, device
        )

        print(f"Validation dataset: {cfg.validation_dataset}")
        if cfg.validation_dataset == "each":
            dataset = valid_data["dataset"].unique()
            val_metrics = [
                calc_metrics(
                    valid_data[valid_data["dataset"] == ds],
                    valid_preds[valid_data["dataset"] == ds],
                )
                for ds in dataset
            ]
            val_metrics = {
                name: sum([m[name] for m in val_metrics]) / len(val_metrics)
                for name in val_metrics[0].keys()
            }
        if cfg.validation_dataset == "all":
            print("Validation dataset: ALL")
            val_metrics = calc_metrics(valid_data, valid_preds)
        else:
            val_metrics = calc_metrics(
                valid_data[valid_data["dataset"] == cfg.validation_dataset],
                valid_preds[valid_data["dataset"] == cfg.validation_dataset],
            )
        print_metrics(val_metrics)

        if val_metrics[cfg.main_metric] > best_metric:
            new_metric = val_metrics[cfg.main_metric]
            print(f"(Found best metric: {best_metric:.4f} -> {new_metric:.4f})")
            best_metric = new_metric
            save_path = (
                cfg.save_path / f"fold{now_fold}_s{cfg.split.seed}_best_model.pth"
            )
            torch.save(model.state_dict(), save_path)
            print(f"Save best model: {save_path}")
            oof_preds[valid_data.index] = valid_preds

        save_path = cfg.save_path / f"fold{now_fold}_s{cfg.split.seed}_last_model.pth"
        torch.save(model.state_dict(), save_path)
        print()

        val_metrics["train_loss"] = train_loss["loss"]
        val_metrics["val_loss"] = valid_loss["loss"]
        for cl, _ in cfg.loss:
            val_metrics[f"train_loss_{cl.name}"] = train_loss[cl.name]
            val_metrics[f"val_loss_{cl.name}"] = valid_loss[cl.name]
        if cfg.wandb:
            wandb.log(val_metrics)